CSS Flex
& Grid

Complete Guide with
Real World Examples and
Code Snippets

ailwind 058

SHRUTI BALASA

"Don’t just learn all the things CSS flexbox and grid can do for you.
Instead learn all the things YOU can do with them."

Complete Guide to CSS Flex & Grid - Tailwind CSS

Version 1.0

Published Online: November 5, 2021

Copyright © 2021 by Shruti Balasa

All rights reserved. No part of this eBook may be reproduced, distributed, or
transmitted in any form or by any means, including recording, or other electronic or
mechanical methods, without the prior permission of the author, except in the case
of brief quotations embodied in critical reviews and certain other noncommercial

uses permitted by copyright law.

For permission requests, send an email to the author at contact@shrutibalasa.com

mailto:contact@shrutibalasa.com

Disclaimer

While every effort has been made by the author to present accurate and up to date
information within this document, it is apparent technologies rapidly change. Therefore,
the author reserves the right to update the contents and information provided herein as
these changes progress. The author takes no responsibility for any errors or omissions if
such discrepancies exist within this document.

The author accepts no responsibility for any consequential actions taken, whether
monetary, legal, or otherwise, by any and all readers of the materials provided.

Readers’ results will vary based on their individual perception of the contents herein, and
thus no guarantees can be made accurately. Therefore, no guarantees are made.

About the Author

Shruti Balasa is a full stack web developer and a tech educator. In the first six years of her
career, she worked at a start-up developing 200+ websites starting from static ones to full-
fledged social networking sites and eCommerce websites.

In the past two years, she started sharing her knowledge by creating courses on various
platforms, video tutorials on Youtube and through tech talks.

Follow her on Twitter or visit her website

https://twiiter.com/shrutibalasa
https://www.shrutibalasa.com/

Table of Contents

[T A0 Yo [VTof o [0 o [

Who is this book for?

How to use this book?

Why Flex & Gridccccoeiiiiiinnnnrnnnnnneeeennniieeeccessnnns

DiSPlay FIEX ...cueeeiiiiiiniiiiiiinenieiinntiesnsnesiessnssssossonsessssssnssssossanes

Example 1a: Quotes Side-by-Side

Understanding display : flex

Justify CONteNnt ...t nne e

Example 2a : Tabs Spaced Out
Understanding justify-content
Example 2b : Card with Previous & Next Links

Example 2c : Team Profiles

FIEX WIAP ocoeeiiiiiietiieinetiensnetiessnnesssssneessessassssesssssessssssssessonss

Example 3a : Responsive Team Profiles
Understanding flex-wrap

Example 3b : Logos Wrapped

DAY 114 4 T § =T o =N

Example 4a : Icon and Text

Understanding align-items

Example 4b : Profile Card - Small
Example 4c : Services Section
Example 4d : Frequent Questions

Example 4e : Center a div

FIEX DIF@CLION ...cevvreereeeneeiiierereennnneeeiereseeeessssssssssssesesssssssssssosessssnnnnes

Example 5a : Welcome Screen
Understanding flex-direction
Main Axis and Cross Axis
Example 5b : Testimonial Card

Example 5c : Alternating List of Profiles

FIEX GIOW .ueeeeeereeneieeeeneneeeenneceseesencesessssessessssesssssssssssssssssssssssssssssnses

Example 6a : Inline Subscribe Form
Understanding flex-grow

Example 6b : Sticky Footer

Example 6¢ : Card with Header & Footer
Example 6d : Tabs Hover Effect

Example 6e : Variable Width Responsive Buttons

FI@X SAFINK oueeeeeeeiieeeeiiertenniieeeeneceeeeneeeresseecessssescerssssnessssssnssssssnnes

Example 7a: Itinerary
Understanding flex-shrink

Example 7b : Profile Card - Large

FIEX BASIS eeeuueiereennnierenneerrensecsreenssssressssssssssssssesssssssesssssssassssssssnsssne

Example 8a : Split Screen Display
Understanding flex-basis
Example 8b : Blog Post Display

Example 8c : Pricing Plans

Flex Shorthand Propertyceeeenverrenerncsensssncnsssncnesssessssnsens

Understanding flex
Example 9a : Navigation Bar with Centered Menu

Example 9b : Image and Text in 2:1 Ratio

AULO MArGINS ..ccoiviieiiiiiiiiiiiiienieneetessanesiesssesssessessssesssssssssssses

Example 10a : Notifications Menu Item

Example 10b : Footer with Multiple Columns

Example 11a : Responsive Navigation Bar

Understanding order

=4 T] |

Example 12a : Product Display
Understanding align-self

Example 12b : Profile with Rating

DN =4 T 00T 4} =T 1 | N

Example 13a: Full Page Testimonials Section

Understanding align-content

L LT L= 2 [

Example 14a : Social Media Icons

Understanding inline-flex

Comprehensive Examples for FIEXDOXccuiiiiiirriiiiinnneniiinscnnnienisnesiesssssensossnsenes 94
Example 15a: Article Preview

Example 15b : Fitness Report

Example 15c¢: Tweet

Display Grid & Grid Template COlUMNSccocvviiireriiieiinseninserinsneisssnessssssssssnssnes 98
Example 16a : Full Page Gallery

Understanding display: grid

Understanding grid-template-columns

Example 16b : Layout with Sidebar

Example 16c : Services Grid

Example 16d : Quick Bites Menu

Grid Template ROWSuueiiiiiiiiiiiiiniiineetieineetsessssesesssnessssssasessessansssssssssssssssnnes 108
Example 17a: Sticky Footer with Grid

Understanding grid-template-rows

Example 18a : Pricing Plans with Grid
Understanding column-gap
Example 18b : Blog Posts Display
Understanding row-gap

Understanding gap

JUSEIY CONLENL ...ttt seesenessesssnsssssssnsessones

Example 19a : Featured Logos in a Grid
Understanding justify-content in Grid

Example 19b : Shopping Cart Summary

ALIgN CONLENLoueeineirreiitiiiiictccececseeneeseeesesseeesesssesessssssees

Example 20a : Profile Card with Bio & Link
Understanding align-content in Grid
Example 20b : Features Logos Center of Page

Understanding place-content in Grid

JUSTITY TE@MS ...ttt tccseee e s sennesessnnesessssnsesssssananses

Example 21a : Featured Logos of Different Widths
Understanding justify-items

Example 21b : Profile Card with Bio & Link Centered

DAY 114 4 T 8 =T 0

Example 223 : Image and Text Section
Understanding align-items in Grid

Example 22b : Featured Logos of Different Heights

o = 1ol < § =] 1 4 1SRN

Example 23a : Center a div using Grid

Understanding place-items

Grid Column Start, End & Spanccccceiiviiveeiiiinienicisseecnesinnes

Example 24a : Horizontal Form

10

Understanding " grid-column-start

Example 24b : Single Price Grid Component

Understanding grid-column-end

Understanding grid-column

Example 24c: Page Layout with Grid

L€ g T I 1o N 147
Example 25a : Contact Form

Understanding grid-row-start & grid-row-end

Understanding grid-row

Example 25b : Responsive Services Section

Example 25c¢ : Testimonials Grid Section

Example 26a : Responsive Pricing Plans

Understanding order in Grid

Advanced Grid Template ValUEscoeiiiirrreiiieinneniinnnneiiesssnnenecssssssssssnsssossonns 156
Example 27a : Pricing Plans with Size Limits

Understanding minmax ()

Example 27b : Blog Post Page with Code Snippet

Example 27c¢ : Responsive Grid without Media Queries

Understanding auto-fit

Understanding auto-£ill

GEIO AULO FIOW ...eeeeereeeeiinieeeierteneeereneeertenesesssesesssssssssssssnssssssssssssssnsssssssnssssssnnssssses 165

1

Example 28a : Analytics Section

Understanding grid-auto-flow

Justify Self & AlIGN SEIf ...ttt resnesssesane s e senssssssssnsssssssnnes

Example 29a : Restaurant Cards with Labels
Understanding justify-self & align-self

Example 29b : Caption at the Bottom of Image

Comprehensive Examples for Grid & Flexbox

Example 30a : Services Section
Example 30b : Twitter Monthly Summary

Example 30c : Social Media Dashboard

(00 s Lef 11 £ [] PSS

12

Introduction

CSS flexbox and grid have become two of the most important topics of web design. Most
of the tutorials on the web teach these concepts using some coloured blocks. You get
introduced to all the CSS properties related to these concepts and how they work. But very
rarely you get to see some examples of where and how these are used in the real world.
Without understanding the real world application, learning is incomplete.

Time for another approach

This book takes a completely different approach. | won't teach you the things flex and grid
can do. Instead, | will first show you some components and layouts and make you think
how to build them using the Tailwind CSS utility classes you already know. Now you have a
problem, and you want a solution. That's when | introduce the concepts you "need" to

know.

This is called Problem-Based Learning (PBL) which will not only keep you motivated
throughout the book, but also help you retain the knowledge far better.

Shall we get started?

Who is this book for?

Whether you are a beginner at Tailwind CSS or CSS itself who has never heard of flex and
grid, or someone who knows all the concepts but finding it hard to implement in real
projects or somewhere in between, this book is for you. Even if you're here just to look at
some examples and practise your Tailwind skills, you will find a great collection here.

13

Prerequisites

Throughout this book | will assume that you know the basic concepts of CSS and how to
use Tailwind CSS. You need not be great at it, but you need to know some of the basic
utility classes for width, height, margin, padding, font, color, background,
border, position, float and concepts of viewport and responsive web design with

Tailwind CSS.

What not to expect

1. Iwill not be going through the concepts in the order in which they are usually
covered in other tutorials or in the official Tailwind CSS documentation.
2. lwill not be talking about installing or setting up Tailwind CSS, configuration, JIT mode

and so on.

3. Do not expect to become an expert at these concepts just by reading the book. You
need to try out each of the examples, try to think of alternate approaches to get the
same output and also think of different similar examples and practise them.

How to use this book?

| value your purchase and time, so | want to make sure you get the best out of this. Of
course, you can skip this section and rush straight to the main content, but | strongly

recommend reading this before you jump in:
Flow of the book

STEP 1 : For every new concept, you will first see an example labelled Example

STEP 2 : You will then see a Iink

14

This is a Tailwind Play link with all the required assets and other styles applied. You can
either give it a shot or skip it. | recommend trying it once or at least looking at the unsolved
output once, so that you'll appreciate and understand the concept | will next present. The
examples are such that, it's usually difficult or impossible to get the desired output
without the knowledge of the concept | will talk about after that example. So don't spend
much time on it and don't get disappointed if you can't get it working.

STEP 3 : | will provide you with the code snippet highlighting the additional utility classes
(usually just a couple of them) you can add to the above Tailwind Play link. Then it works!
Even without knowing the concept, just looking at those class names, you might be able to
make sense of what's happening.

Justin case it didn't work, you can compare your code with the R LT Ty f-801=T3116)

STEP 4 : Next we will get to explaining the concept and understand the utility classes we
just used, and also look at other utilities related to the same concept. This is labelled

Concept

STEP 5 : You might see some more examples next, to practice the concept that you just
learned with different classes related to the same CSS property. Each of these examples

have working demo links below them.
STEP 6 : And then the cycle continues with new examples and concepts.

The Examples labeled 7a, 1b, 1c and so on are related to Concept 1

Newbie's Guide

If you are completely new to Flexbox and Grid, don't skip any of the steps above. Go
through the examples multiple times if needed, until you understand what's going on.
Please note that the order in which the concepts are covered in this book is very different
from most of the tutorials you will see. So | recommend completing this book fully before
you look into other resources online, to avoid confusion.

15

https://play.tailwindcss.com/

Intermediate’'s Guide

If you have a little knowledge of the Flex and Grid related to Tailwind CSS classes already,
you can try out each of the examples and directly compare with the working demo. Even if
you got it right, | recommend reading the concept once to reinforce the knowledge you

already have.

Tailwind CSS Version Used

As of releasing this book, the latest version of Tailwind CSS available is v2.2.15. | will be
referring to the available utilities of this version.

If you are using an older version, please do check for availability of the utility classes used

in the examples.

If you are using a newer version, you should not have a problem, unless some utilities get
deprecated. | will try and keep this book updated with the addition of utility classes as and
when a new version of Tailwind CSS is released. Do check back for an updated version.

Also, all the examples use JIT mode.

Tailwind Play Links

1. The examples require a lot of styling with colors, fonts, spacing, width and more.
Adding all these utility classes in HTML will get in the way of learning the necessary
flex and grid utility classes. Hence | have extracted all the general styles using

@apply directive and added them in the custom CSS tab. So, the only utility classes
you will see in HTML are the most important ones.

2. There are some examples where a pure Tailwind solution is not available. In those
cases, | have taken one of three approaches:

1. Generated arbitrary styles using square bracket notation in JIT mode

2. Customized some utility classes in config file (Check config tab wherever
mentioned)

3. Added custom styles in CSS. Look for them after the comment /* Important

16

https://play.tailwindcss.com/3RGufINrei?file=config

styes */ (Check CSS tab wherever mentioned)
3. Each of these links are private. Kindly do not share these links individually anywhere
else.

Reach Out

Feel free to send a mail to contact@shrutibalasa.com or send a Direct Message on Twitter
- @shrutibalasa:

1. If you find any wrong information in this book. | have spent a lot of weeks in research
but | could still be wrong. Help me correct the info, so that others don't get
misguided.

2. If any of the links are broken or lead to a wrong URL.

3. If you like this book and personally want to let me know how it helped you) Such
mails make my day!

4. If you love to talk about this book in your circle, don't do it for free. Reach out to
become an affiliate.

5. If you are looking for team pricing.

6. If you want to gift this book to a few people and looking for a discount.

17

https://play.tailwindcss.com/3RGufINrei?file=css
mailto:contact@shrutibalasa.com
https://twitter.com/shrutibalasa

Why Flex and Grid

Don't you want to first know what problem we are solving?

The Problem

Any modern web page today looks something like this on a desktop:

Now imagine building this and making it responsive so that it looks great, readable and
accessible on smallest of the phones to the largest of the desktops! Assuming you don't
know flex and grid, how would you approach this layout?

18

What you might already know

Without any styling, the elements follow the normal flow on the web page. That is, the
order in which the elements are specified in your markup is the order in which they
usually appear on the web page - one below the other for block-level elements and one
next to the other for inline or inline-block level elements. With margins and padding, you
can increase or reduce the space between the elements.

Using relative , absolute Or fixed positions, you can remove the element from its
normal flow and position it elsewhere relative to itself or the page.

With the float property, you can make block-level elements appear next to each other
but it needs a lot of effort to make full page layouts, like the one above, with just float. If
you have ever tried it, you know the struggle.

Using table, you can achieve the desktop layout easily, but cannot make it responsive.

Now that you understand the problem, let's get to the solution!

The Solution

Here's presenting the two mighty weapons in CSS - Flexbox and Grid. You can lay out
elements on your web page to build responsive layouts in the best way possible with
these. Once you understand and start using these, you will never want to go back to

building layouts using any other way!

Let's start with Flexbox first, looking at some examples and master it fully. Then we see
what we can do using Grid.

19

0 Display Flex

Let's look at a very simple example to begin with.

Quotes Side-by-Side Example 1a

Assume you have three motivational quotes to display on your web page in a single row
(on Desktop screen size). You want the blocks to occupy the same height and hence adjust
widths based on the length of each quote. These quotes are randomly picked. You don't
know how long or short each one is, so you cannot specify widths in fixed units for them.

“The success combination in business “Give out what “You don't have to be great at

is: Do what you do better... and: do you most want to something to start, but you have to
more of what you do.” come back.” start to be great at something.”

- David J. Schwartz - Robin Sharma - Zig Ziglar

Here's a Play link for you to try achieving this layout using any of the utility classes you

already know:

» Try it out

Did you give it a shot? | hope you're convinced that there's no way to achieve this when
you don't know how long each quote will be. Can you believe if | tell you this is possible
with just one utility class? Let's see how.

21

https://play.tailwindcss.com/TMtbOQExus

Solution

<div class="flex">

<div> ... </div>

<div> ... </div>
<div> ... </div>
</div>

You just need to add flex class to the parent container. Here's the full working demo.
Tada! 3<

» Working Demo

Resize the output panel, rearrange the quotes or add longer ones. Notice how flexible the
blocks are. This is not yet responsive and you can't add too many quotes yet, but we'll get
to those problems soon.

Now that you got a taste of flexbox, let's actually understand what it does.

Understanding Display Flex ' concept

Flexbox is a method that helps us arrange elements in one direction (horizontally or
vertically) and control their dimensions, alignments, order of appearance and more. For
this, we need at least two elements - a parent element called flex container and at least
one child element called flex item.

In our above example, the parent element is the flex container, while .quote elements
are the flex items. And as you just saw, adding flex class to any element makes it a flex

container.

Note: Only the immediate child elements of the container become flex items. Children of
flex items are not affected.

22

https://play.tailwindcss.com/acMVfuSzYE

Tailwind CSS Property &

Explanation
Class Value

Setting the display property of an elementto flex
flex display: flex; . .
makes it a flex container

Once you have a flex container and some flex items, there are multiple other Tailwind

utilities that can be added to these elements to control the dimensions, alignment, spacing
and more. We will be looking at all those classes next, starting with one example for each.

23

ejustify Content

Tabs Spaced Out Example 2a
Example contributed by Naresh

Let's say you have a few tabs on your page and you want them to space out fully with the
first tab on the extreme left, last tab on the extreme right and the middle ones spaced out
evenly. These tabs have different widths. How would you do it?

Notifications Payments Settings

You can try this without flexbox if you wish to:

» Try it out

| doubt if there is a solution to this without flexbox. Even if you solved this, I'm sure it

wasn't an easy approach. Let's see how we can achieve this with flexbox.

Solution

<div class="menu flex justify-between">

<a> ...
<a>...
<a> ...
<a> ...
</div>

» Working Demo

24

https://twitter.com/naresh_io
https://play.tailwindcss.com/foLEE0kfJn?size=968x720
https://play.tailwindcss.com/yBgBSiY4Pa?size=968x720

Along with the flex class, we need to add just one more class justify-between to the
same element. Let's learn more about these utilities.

Understanding Justify Content concept

Before we understand these utilities, there's something else you need to know. The
moment we add a flex class to an element, we saw that the children get placed next to
each other in one single row. This is a default behaviour. However, we can place them all
one below the other in a single column instead. We will get to that a little later.

The utility classes justify-* are used to control spacing of the flex items in the direction
they are placed. In our above example, it's the horizontal direction. justify-between is
one of the available utilities we just used. Some more utilities are mentioned below:

Tailwind Class CSS Property & Value Explanation

All items are placed at the beginning of the

justify-start justify-content: flex-start; . .

container with no spaces

All items are placed at the end of the
justify-end justify-content: flex-end; . .

container with no spaces

All items are placed at the center with no
justify-center justify-content: center;

spaces

All items are spaced out as much as possible
justify-between justify-content: space-between; with first item at the beginning and last item

at the end (We just saw this in action)

Space before the flex items and after the flex
justify-around justify-content: space-around; items are half as much as space between the

items

Space before, after and between the items
justify-evenly justify-content: space-evenly;

are same

25

You can see the difference between these values below:

justify-start

Notifications Payments Settings

justify-end

Notifications Payments Settings

justify-center

Notifications Payments Settings

justify-between

Notifications Payments Settings

justify-around

Notifications Payments Settings

justify-evenly

Notifications Payments Settings

Open the working demo, resize the output panel and see how the items move.

» Working Demo

Let's look at some more examples where these utilities would be helpful.

Card with Previous & Next Links Example 2b

Many times we need two elements at the extreme ends of a section / container, like these
"Prev" and "Next" buttons placed at the extreme ends of a card. This is a great example of

flexbox with justify-* utilities used for alignment.

26

https://play.tailwindcss.com/wJKeQ3KikX?size=970x750

CSS Flex & Grid

This book takes a completely
different approach. | won't teach
you the things flex and grid can do.
Instead, | will first show you some
components and layouts and make
you think how to build them using
the CSS concepts you already
know. Now you have a problem,
and you want a solution.

Prev Next

Now that you have seen one example, try this out on your own and cross check with the

working demo.

» Try it out » Working Demo

Team Profiles Example 2c

Assume you need to design a "Team" section to display profiles of four people as you can
see below. Notice that there is some space to the extreme right and left. This is best
achieved with flexbox and justify-around class for the container.

27

https://play.tailwindcss.com/YkgLXoIfr8?size=570x650
https://play.tailwindcss.com/44fDGbZuMT?size=570x650

a 0 € 3

Alexa Kardi Tavell Monroe Adale Smith Thomas Mason
Founder and CEO Web Developer Marketing Specialist UX Designer

Try it out yourself in the Play link below and then cross check with the working demo.

» Try it out » Working Demo

28

https://play.tailwindcss.com/SMza854she?size=1100x500
https://play.tailwindcss.com/60OYmgW2br?size=1100x500

9 Flex Wrap

Responsive Team Profiles Example 3a

The above examples work great with desktop screen sizes. But try resizing the output
panel to a mobile screen size and you will either notice a horizontal scrollbar or the design

breaks in some way. How can we make those items move to next row for smaller screens
like this?

Alexa Kardi Tavell Monroe
Founder and CEO Web Developer

A
|
Adale Smith Thomas Mason
Marketing Specialist UX Designer

Solution

Here's what you can do. Add another class flex-wrap to the container element:

29

<div class="container flex justify-around flex-wrap">
<div class="team-profile">

</div>

¢— Three more team profiles —
</div>

» Working Demo

Understanding Flex Wrap concept

The flex-wrap utility class makes the flex items wrap if you run out of space. The default
behaviour is to not wrap, which is why the child items do not move into the next row
automatically.

Tailwind Class CSS Property & Value Explanation

Items are wrapped into the next line if
flex-wrap flex-wrap: wrap;

needed

Iltems are not wrapped even if it causes
flex-nowrap flex-wrap: nowrap;

overflow

Items are wrapped in the reverse
flex-wrap-reverse flex-wrap: wrap-reverse;

direction

Let's look at another example.

30

https://play.tailwindcss.com/EJ9Bj217Ze?size=600x530

Logos Wrapped Example 3b

Let's say you need to display a few logos of your clients in a row with spaces between and
around them and you want them to be responsive on smaller screens. You can use
justify-around for the spacing and the flex-wrap class to wrap the logos.

Top Clients

Q sare €© circleai ORNPOINT O

Top Clients

Q saFE QO circleai

ONPOINT gy (s

First three logos contributed by Gokul

» Try it out

Solution

<div class="logos flex justify-around flex-wrap">
<img
<img

<img

000 &
000 &
000 &
000 &

<img
</div>

» Working Demo

Try out flex-wrap-reverse instead, to see the difference.

31

https://twitter.com/srigokulkrish
https://play.tailwindcss.com/TdYmObRBIV?size=700x530
https://play.tailwindcss.com/UdIE5SQ7LX?size=540x530

0 Align Items

Icon and Text Example4a

Example Credits: Inovatik

Let's look at another simple use-case of flexbox. An icon and text placed next to each
other vertically centered.

u Video Conference

Without flexbox, can you vertically center align an icon and text like in the above example?

» Try it out

You can try adding align-middle class for the .icon. But that's not sufficient. You will
need to add align-middle to the .icon-text too.While you might be okay with this
adjustment, this is better done with flex.

Solution

Instead of the align-middle utilities, add these two classes to the .icon-wrap element.

<div class="icon-wrap flex items-center">

 ...

 ...
</div>

» Working Demo

32

https://inovatik.com/
https://play.tailwindcss.com/HRaPPUhxWC?size=540x530
https://play.tailwindcss.com/WzZ6sDtJiB?size=540x530

Apart from flex, we added just one more utility - items-center . Let's learn more about
this.

Understanding Align Items concept

The justify-+* utilities allow us to control the spacing and alignment of the flex items in
the direction they are placed (Horizontally in all our previous examples). While items-*
utilities allow us to control the alignment in its perpendicular direction. This illustration
might give you a better idea:

justify-*

o -

This illustration is valid only for the concepts we have learned so far. We will talk about these

directions again soon

In case of all our above examples, justify-* can be used to space out the items
horizontally, and items-* can be used to align items vertically. This is useful especially
when the height of each item is different. items-center is one of the available utilities we
just used. Some more utilities are mentioned below:

33

Tailwind
Class

items-stretch

items-center

items-start

items-end

items-baseline

CSS Property & Value

align-items:

align-items:

align-items:

align-items:

align-items:

stretch;

center;

flex-start;

flex-end;

baseline;

Explanation

All items are stretched to fill the container

All items are aligned to the center of the
container

All items are aligned to the beginning of the
container (at the top in case of the above
example)

All items are aligned to the end of the
container (at the bottom in case of the above
example)

All items are positioned such that the base
aligns to the end of the container (will we
talk about this soon)

You can see the difference between these values below:

n Stretch

» Working Demo

To understand the effect of items-baseline value, replace the svg icon with an

alphabet and increase the font size by changing:

34

https://play.tailwindcss.com/epBJLBpXkB?size=1100x530

<svg> ... </svg>

V

Baseline

Now you can notice that the base of V is aligned with the base of the word "Baseline”,
almost like both of them are placed on an invisible line.

The most used utilities are items-stretch and items-center . So let's look at more of
those examples.

Profile Card - Small Example 4b

Many times we need a component with an avatar and a couple of lines next to it. The

items-center utility is very useful for such requirements:

Matt Cooper
Designer - CircleAl

35

Try doing this yourself before looking at the working code

» Try it out » Working Demo

Services Section Example 4c

When we need to list services as in the below screenshot, the text for one service may
occupy 2 lines and for another it may occupy 1 or 3 lines. But we don't want to set a fixed
height to keep all the boxes the same height. This is the best use case for the default

behaviour of flex items which can also be applied using items-stretch utility class.

o @ @

Photo Shoot Video Production Digital lllustration
Lorem ipsum dolor sit amet, Donec nec justo eget felis facilisis Praesent dapibus, neque id cursus
consectetuer adipiscing elit. fermentum. Aliquam porttitor faucibus, tortor neque egestas

mauris sit amet orci. auguae.

» Working Demo

In the above link, you can remove the items-stretch class because its the default. To
understand the difference better, change the class to items-end

<div class="container items-end">

in the above demo.

36

https://play.tailwindcss.com/z78JZRig4i?size=400x530
https://play.tailwindcss.com/sDoa1nfFBW?size=400x530
https://play.tailwindcss.com/ZMdGxCjSfT?size=1200x530

Frequent Questions Example 4d
Example from Inovatik

Look at this example where some questions are preceded by numbers aligned to the top.

Frequent Questions

n Whom is this event intended for?

Rose event is organized for both aspiring and
accomplished designers, developers and marketers
around the world.

a Why should | come maybe it's a waste of
time?
You should come to Rose this year because it will be
one of the most information packed events of the
year.

a Any restrictions that | should ba aware of?

Yes you definitely need to leave your preconceptions
behind, keep an open mind and enjoy the
presentations.

Try using one of the items-* utilities to make this happen before looking at the working

demo.

» Try it out » Working Demo

37

https://inovatik.com/
https://play.tailwindcss.com/WTXsfxKNCu?size=430x530
https://play.tailwindcss.com/SR7F0T4j6U?size=430x530

Center a div Example 4e

This is something you will always encounter. You want to center a div or any element
within its parent, but there's no straightforward way to center it both horizontally and
vertically. With flexbox, using the justify-* and items-* utilities, it's super easy.

I'm at the center of this page

Solution 1

We have a container occupying full screen using w-full and h-screen . Within this, is
one .item divthat we wish to center within the container. Adding flex utility to the
parent makes it a flex container and the .item becomes a flex child. In all the previous

examples, we always used more than one flex item. But in this example we need only one.

<div class="w-full h-screen flex justify-center items-center">

<div class="item"> ... </div>
</div>

Adding justify-center and items-center positions the child item at the center of the

page horizontally and vertically.

» Working Demo

38

https://play.tailwindcss.com/gF3sBxJSmJ?size=450x630

Try changing the width and height of the parent div in the link above to see how the
.item still remains at the center of the container.

Solution 2
There's another way you could achieve the same result
<div class="w-full h-screen flex">

<div class="item m-auto"> ... </div>
</div>

» Working Demo

Here, instead of using justify-center and items-center On container, we have used

m-auto utility on the flex item to set the CSS margin property to auto.You can use any
of the two methods above that suits you.

39

https://play.tailwindcss.com/O59Cb45x76?size=450x630

o Flex Direction

Welcome Screen Example 5a

Here's an example you will come across a lot. Two or more items vertically centered within
its container.

{ Create account]

Using the flexbox concepts you just learnt, or without flexbox, can you make this happen?

» Try it out

40

https://play.tailwindcss.com/uOca1S7tjw?size=550x630

Possible Solution

There are multiple approaches to this. In case you used the concepts your learned so far,
you might have tried adding an additional div within wrapper and added flex and
items-center tothe wrapper. Additionally adding block utilities to the links.

<div class="wrapper flex items-center">

<div class="w-full">

Login

Create account
</div>
</div>

While the above solution works, it's a long one! There's a better approach. You can instead

try this:

Better Solution

Simple add the flex, flex-col and justify-center classes to the parentdiv:
<div class="wrapper flex flex-col justify-center">

Login
Create account

</div>

» Working Demo

Confused? You better be (&) Let's understand what just happened.

41

https://play.tailwindcss.com/evRPFKUqeI?size=550x630

Understanding Flex Direction Concept

The first thing we learnt here was that adding f£lex utility makes all the child elements get
laid out in one direction. By default they all get placed in a single row. To change that row

direction to a column instead, we can use the flex-col utility along with flex.

Some more utilities related to the flex direction are:

Tailwind Class CSS Property & Value Explanation

This is the default behaviour. All items are

flex-row flex-direction: row; . . X

placed in a single row from left to right

All items are placed in a single column from top
flex-col flex-direction: column;

to bottom

All items are placed in a single row from right
flex-row-reverse flex-direction: row-reverse;

to left

All items are placed in a single column from
flex-col-reverse flex-direction: col-reverse;

bottom to top

At first, it appears that using flex-col with flex is same as the normal flow of the web
page. Without flexbox, this is how the elements are placed anyway. Then why do we need
this? Like we just saw in Example 5a above, this is the best way to vertically align those two
buttons in the center of the container. There are few more use cases of flex-col thatwe
will explore further.

Before that, | want you to notice one thing. In the above example, we used justify-
center to center the items vertically. In Example 4a and Example 4b, we used items-

center to center the items vertically! Now why is that?

42

Main Axis and Cross Axis

When the flex direction is row, X axis is the main axis and Y axis is the cross axis. But for

flex direction column, Y axis is the main axis and X axis is the cross axis.

row & row-reverse column & column-reverse

5
>

CROSS AXIS

5
>

MAIN AXIS

5

CROSS AXIS

~

~

MAIN AXIS

The justify-* utilities control spacing and alignment along the main axis, while the
items-* utilities control alignment along the cross axis. In Example 5a, our flex direction
is column . So vertically centering needs alignment along its main axis. That's why we need

to use justify-center.

This concept requires some practice. Let's look at more examples now.

Testimonial Card Example 5b

Assume you have a testimonial card with fixed height. Within the card, there's a quote icon
at the top, customer name at the bottom and the testimonial text at the middle. The
testimonial text can vary in length, but needs to be equally spaced from the icon and the

name.

43

| just finished my trial period and
was so amazed with the support
and good results that | purchased
the Pro version for my business.

John Doe

Now use the flex-col class along with few more necessary classes and see if you can get

the desired result.

» Try it out

Solution

We need to apply 4 utility classes to to the container .card

<div class="card flex flex-col justify-between items-start">

<p> ... </ p>

 ...
</div>

» Working Demo

44

https://play.tailwindcss.com/lKzHC0OJe3?size=500x600
https://play.tailwindcss.com/AyZfnrBTJd?size=500x600

By default, the flex items stretch along the cross axis. So without the items-start class,
the icon image stretches full width because that's the cross axis when column direction is
used. The utility class justify-between is what makes the child items space out vertically
as required.

Try adding more lines to the testimonial text or removing some lines. You will notice that
the text still remains equally spaced from the icon and name, as required.

Alternating List of Profiles Example 5c

Let's say you have to list some profiles on your page. To break the monotony, you'd like to
alternate the photos and text like this.

, § Alexa Kardi
Founder and CEO

Donec odio. Quisque volutpat mattis eros. Nullam
malesuada erat ut turpis. Suspendisse urna nibh, viverra
non, semper suscipit, posuere a, pede.

Tavell Monroe
Web Developer

Morbi in sem quis dui placerat ornare. Pellentesque odio
nisi, euismod in, pharetra a, ultricies in, diam. Sed arcu.
Cras consequat.

One way is to directly change the order in HTML.

45

Markup

<div class="profile">

<div> ... </div>
</div>
<div class="profile">
¢l— Reverse the order —
<div> ... </div>

</div>

But if you have a long list and suddenly you wish to insert another profile somewhere in
between, you will have to again reverse the order in the markup for all the profiles that

appear after that.

Using flex-row-reverse only for even child items, you can achieve this without

changing the order.

» Try it out

Solution

<div class="profile flex items-center even:flex-row-reverse even:text-
right">

<div> ... </div>

</div>

» Working Demo

46

https://play.tailwindcss.com/p4wn58CHMa?size=750x600
https://play.tailwindcss.com/5RSrrFvJ3Z?size=750x600

The even: prefix helps apply the row-reverse direction only the the even child
elements. This solution is helpful when you are using frameworks like Vue, React or

Laravel where you have the profiles data stored in objects and you display them using
loops.

a7

G Flex Grow

Inline Subscribe Form Example 6a

Here is a subscribe form with a text input and a button displayed in a single row. So
flexbox is the best solution, but how do you make the text input occupy all the available

horizontal space of its parent container?

Email Address m

Try out and see how you can make the text input occupy the entire space available while
the Subscribe button takes up only as much space as needed. (Don't take too long trying
because we have a very simple utility class for this)

» Try it out

Markup

<div class="container flex">

<input ...>

<button> ... </button>
</div>

We already have flex applied on .container . Now we need to add one class to the

input element.

48

https://play.tailwindcss.com/lnsalPQOoR?size=800x600

Solution

<input class="flex-grow"

» Working Demo

This just works! Resize the browser and it's fully responsive.

Notice that until now, we only added classes to the parent element - the flex container.
The class flex-grow is the first one to be used on a child element - the flex item. Now

let's learn more about these utilities.

Understanding Flex Grow concept

The default behaviour of a flex item is to occupy only as much space as needed by the
content within. It doesn't "grow", because the default value of the CSS flex-grow
property is 0. By adding the flex-grow class to an element, we are changing the
element's flex-grow to 1. In CSS, you can set this to any number greater than 0. This
value is also called the grow factor. You can make the item occupy the left over space (Left

over width in case of row direction, and left over height in case of column direction).

In the previous example, we added the rule flex-grow for the text input. This made the
input field occupy all the left over width in the parent. What if we add the same rule to the
button as well? Try for yourself in the same demo link above.

49

https://play.tailwindcss.com/b8LjLcXE2e?size=800x600

Notice how the button also tries to occupy some of the left over horizontal space. Also
notice that we added a grow factor of 1 to both the items, but they don't have equal
widths. This is where it's easy to get confused. Read the next part carefully.

When flex-grow is added to two flex items, the left over space is divided into two parts
and added to the initial widths of those two items. Since the text input's initial width was
more than that of the button, it occupies more space. In Tailwind CSS, we have only two

utility classes available with respect to flex grow.

Tailwind CSS Property .

Explanation
Class & Value

The item grows to occupy remaining space along the main
flex-grow flex-grow: 1; .

axis

This is the default. The item occupies only as much space as
flex-grow-0 flex-grow: 0;

needed even if more space is available

But if we want to set a higher flex-grow value, we can add it in the config file or use
arbitrary values or add custom styles. What if we add flex-grow: 2 to the textinput, but
flex-grow: 1 to the button? This time, the left over space is divided into three equal
parts. Two parts width is added to the text input and one part width to the button &

If this is too confusing, just don't worry. In the next few examples, all of this will become

clear. For now, just remember:

1. flex-grow is a flex item's utility (and not of flex container)
2. It can take any value greater than or equal to 0.
3. The default value is 0, hence the flex item does not grow by default

50

Sticky Footer Example 6b

Ever faced a situation where your main content is too small, making your footer appear
somewhere in the middle of the page instead of at the bottom? The easiest solution to this
is using flexbox for the whole layout, with column direction and adding flex-grow to the

main content.

Main Content

Footer

» Try it out

Markup

<div class="container">

<div class="main"> ... </div>

<footer> ... </footer>
</div>

51

https://play.tailwindcss.com/glkRm7wS98?size=950x600

We need to first add a min-h-screen to the .container.Otherwise nothing will work.
Then make it a flex container with flex and flex-col.Atlast, add flex-grow utility to

the .main element.

Solution

<div class="container min-h-screen flex flex-col">

<div class="main flex-grow"> ... </div>

<footer> ... </ footer>
</div>

» Working Demo

If the main content is long enough, the footer is at the bottom as usual. Which is why it's

called a "Sticky Footer". Do check for yourself.

Card with Header & Footer Example 6c

This one is very similar to our previous example. Let's say we have a card of a specific
height - like a blogpost preview with title (as header), an excerpt and a "Read more" button
(as footer). The excerpt might sometimes be small, but you would want your button to
"stick" to the bottom of the card regardless of the height of the excerpt.

52

https://play.tailwindcss.com/rUfPS5AOiR?size=950x600

The Power of CSS
Flexbox

Phasellus ultrices nulla quis nibh.
Quisque a lectus. Donec
consectetuer ligula vulputate sem
tristique cursus. Nam nulla quam,
gravida non, commodo a,
sodales sit amet, nisi.

Read more

Since this is very similar to the previous example, | would encourage you to try it out first
before looking at the working demo.

» Try it out » Working Demo

Tabs Hover Effect Example 6d

Here's an example of tabs that expand on hover. Each tab has a variable width depending
on the text. Once hovered, the active tab expands while the other two shrink.

Description Care Instructions Return Policy

Description & Care Instructions Return Policy

53

https://play.tailwindcss.com/4Jc8un7tzc?size=540x600
https://play.tailwindcss.com/MG8HrxaBO0?size=540x600

Can you try and achieve this by changing the flex-grow value on hover (using arbitrary
styles with [1)?

» Try it out

Markup

Solution

Initially, all the tabs are setto flex-grow: 1 and on hover, we increase the value of

flex-grow to any number depending on how wide you want the active tab to be.

<ul class="flex">
<li class="flex-grow hover:flex-grow-[3]"> ... </1i>
<1i class="flex-grow hover:flex-grow-[3]">...</1i>

<li class="flex-grow hover:flex-grow-[3]"> ... </1i>

/ul>

» Working Demo

Variable Width Responsive Buttons Example 6e

Consider this example where you have three buttons below a blog post - "Like", "Share"
and "Leave a Comment". You want them to occupy full width of the container and also
want to give importance to the last button by giving it a larger width compared to the

other two buttons.

54

https://play.tailwindcss.com/dZC8QF3TUp?size=840x500
https://play.tailwindcss.com/EnhCYS0Xht?size=840x500

“

m

And yes, this is very easy with flex-grow. Also, when you set the flex-wrap property to
wrap , you get a responsive solution without using any media queries.

» Try it out

Markup

<div class="container">
<button type="button"> ... </button>
<button type="button"> ... </button>
<button type="button"> ... </button>
</div>

Solution

<div class="container flex flex-wrap">
<button type="button flex-grow"> ... </button>

<button type="button flex-grow"> ... </button>
<button type="button flex-grow-[2]">...</button>
</div>

55

https://play.tailwindcss.com/lcmAbsvuan?size=900x500

» Working Demo

We will look at more examples that use flex-grow once we learn a couple more

properties.

56

https://play.tailwindcss.com/pH8Ud24h3p?size=900x500

Q Flex Shrink

Itinerary Example7a

Here's a simple itinerary component with the description on left and time on right.

Visit to the Eiffel Tower

There's no better start to your Paris tour than visiting the
iconic Eiffel Tower. This is a must visit tourist spot in the
whole of France.

Lunch at New Jawad

It is an Indian restaurant close to the Eiffel Tower. Enjoy
delicious Indian traditional food and South Asian food.

It looks simple and easy to achieve using flexbox, but because flexbox decides the width of
each child item based on the content within, the time element gets a very little space

making it appear in two lines like this

A HTML solution to this is to wrap the time in <nobr> tags. But can you find a CSS solution
to this problem?

» Try it out

Let's see how to get this working using another set of flex item's utility classes flex-

shrink

57

https://play.tailwindcss.com/IHf0CEI25G?size=700x500

Markup

<div class="container">

<div> ... </div>

10:00 AM
</div>

Solution

<div class="container flex items-start">
<div> ... </div>
10:00 AM
</div>

This will prevent the time span from shrinking.

» Working Demo

You might immediately see that flex-shrink is somewhat opposite to flex-grow. Let's

learn about these utilities in detail.

Understanding Flex Shrink = concept

The default behaviour of flex items is to shrink to fit in a single row or a single column of
the container (unless flex-wrap is setto wrap). Hence each item shrinks proportionate
to its initial size. You don't have to get into the exact calculations. A larger element shrinks
more than the smaller one by default. This is because, the default value of flex-shrink
for each flex item is 1.

58

https://play.tailwindcss.com/d9XiAMGTCd?size=700x500

In our previous example, we changed this value to 0 using the utility class flex-shrink-
0, hence preventing the item from shrinking. The other item shrinks to fit. The way grow
factor specifies how much additional space the item should occupy, the shrink factor
specifies how much space should be reduced from the flex item's initial width.

In Tailwind CSS, we have only two utility classes available with respect to flex shrink.

Tailwind CSS Property .

Explanation
Class & Value

This is the default. The item shrinks along the main axis
flex-shrink flex-shrink: 1; . .

to fit in a single row.

The item does not shrink even if it causes the container
flex-shrink-0 flex-shrink: 0;

to overflow

You will mostly never use a shrink factor other than 0 or 1. You would either want the

element to shrink or not. So, you only need to remember these:

1. flex-shrink is a flex item's property
2. It can take any value greater than or equal to 0.
3. The default value is 1, hence the flex item shrinks by default regardless of the

specified width.

Profile Card - Large Example7b

We saw a small profile card in Example 4b. Since that's small, it's responsive as it is. But if
you add a long description instead of small text, the image on the left shrinks to become

an oval on smaller screens.

59

Matt Cooper

A front end web developer from New York, USA. Currently working
as a freelancer. Drop a mail or say hello &

Can you make the image not shrink?

» Try it out

Yes, one solution is to change the width to min-width . It works for this example, but

sometimes we might not know the exact width. Hence its best to use flex-shrink.

Markup

<div class="profile">

<div> ... </div>
</div>

Solution

<div class="profile flex items-center">

<div> ... </div>

</div>

» Working Demo

60

https://play.tailwindcss.com/LL7pPN7TmV?size=650x500
https://play.tailwindcss.com/BamUVbR0aJ?size=650x500

Q Flex Basis

Split Screen Display Example 8a

Here's a simplified example of a landing page with a split screen display occupying full

screen. On large screens, the page is split up horizontally and on smaller screens, it's split
up vertically.

Learn Teach
Build your skillset with the hottest courses Share your knowledge and earn some income
Start Learning Start Teaching

Build your skillset with the hottest courses

Start Learning

Teach

Share your knowledge and earn some income

Start Teaching

61

With the concepts you've learned so far, I'm sure you can make this work. Since Tailwind
CSS uses mobile first approach, you need to first use flex-col to split the screen

vertically for small screens along with height utilities for half height. For wider screens,
you can use the md: prefix and change to flex-row and using width utilities, split the

screen horizontally.

» Try it out

Markup

<div class="container">
<div class="split">...</div>

<div class="split"> ... </div>
</div>

The .container element should be full screen. That's done with w-full and h-screen.
Also, the container's flex direction is set to column on smaller screens and row on large
screens. So this is achieved with flex flex-col md:flex-row.

Then, you can add a h-1/2 to the flex items on small screens. And on large screens, w-
1/2 and change the height back to h-full.

Possible Solution 1

<div class="container w-full h-screen flex flex-col md:flex-row">
<div class="split h-1/2 md:w-1/2 md:h-full"> ... </div>

<div class="split h-1/2 md:w-1/2 md:h-full"> ... </div>
</div>

Or, you might can add a flex-grow to both the flex items.

62

https://play.tailwindcss.com/1GQEJ4ksAW?size=800x600

Possible Solution 2

<div class="container w-full h-screen flex flex-col md:flex-row">

<div class="split flex-grow"> ... </div>

<div class="split flex-grow">...</div>
</div>

Both the solutions work for this example. Solution 1 is long but works all the time. Solution
2 is short but might not work for different cases (Example, one split screen contains a

large image).

Better Solution

<div class="container w-full h-screen flex flex-col md:flex-row">
<div class="split basis-1/2">...</div>
<div class="split basis-1/2">...</div>

</div>

But basis-1/2 is notyet a utility class in v2.2.15. It will soon be added to v3+. Until then,
we can add custom CSS like this:

dlayer utilities {
\/2 {
flex-basis: 50%;

» Working Demo

So flex-basis property for a flex item is similar to width for flex-row direction and

similar to height for flex-col direction.

63

https://codepen.io/thirus/pen/5d1d76d6b14753218d6de4143d7adaa3?editors=1100

Understanding Flex Basis Concept

The property flex-basis is another one that can be defined on the flex item along with
flex-grow and flex-shrink. Like we already saw in the previous example, this property
sets the initial size of the flex item - that is, width in case of row direction and height in
case of column direction. Along with flex-grow and flex-shrink, this property helps

decide the size of the flex item.

When you set the flex-basis of anitem to 100px for example, the item first occupies

100px . And then,

1. If there's more space available AND flex-grow is greater than 0, the item grows to
occupy more than 100px
OR

2. If there's less space AND flex-shrink is greater than O, the item shrinks to occupy

lesser than 100px

By default, the value of flex-basis is auto, which means the size is auto-calculated

based on the width or height utilities.

Once the basis-* utilities are added to the upcoming version in Tailwind CSS, you can
use it similar to the width and height utilities. Some of the example values are here:

64

Tailwind

CSS Property &

Explanation

Class Value
basis-auto flex-basis: auto; This is the default value. The size is auto-calculated
basis-0 flex-basis: 0; We will soon see a use-case for 0 value
basis-full flex-basis: 100%; The size is 100%

Percentage values like 25%, 50%, 75%, 33.33%,
basis-1/2 flex-basis: 50%; . .

66.67% and so on will be available

All the fixed values like 6rem that are available for
basis-24 flex-basis: 6rem . .

width and height will be available

Blog Post Display Example 8b

Here's a blog post display example very similar to Example 7b of a large profile card. It has
an image on the left and long text on the right.

Make the Best Pizza at Home

The secret to baking the best pizza at home
lies in the preparation of the...

65

Markup

<div class="container">

<div>

<img

</div>
<div> ... </div>
</div>

Solution

<div class="container flex items-center">
<div class="mr-4 basis-20 flex-shrink-0">

</div>
<div> ... </div>
</div>

For a version lower than v3, we need the following custom styles too:

dlayer utilities {
{

flex-basis: 5rem;

» Working Demo

66

https://play.tailwindcss.com/uGTfIZMspL?size=600x400

Pricing Plans Example &c

Three equally sized blocks with margins in between is a very common pattern. With all the

concepts we just learnt, this example doesn't look very hard now.

Standard Popular Premium
Monthly Plan Monthly Plan Monthly Plan

$25 $40 $55

» Try it out

Markup

<div class="container">
<div class="plan"> ... </div>
<div class="plan"> ... </div>
<div class="plan"> ... </div>
</div>

Possible Solution

Set basis-1/3 to all the flex items along with mx-4 for spacing between the plans:

<div class="container">

<div class="plan mx-4 basis-1/3">...</div>

<div class="plan mx-4 basis-1/3"> ... </div>
<div class="plan mx-4 basis-1/3">...</div>
</div>

67

https://play.tailwindcss.com/XfcfhWRt6E?size=800x500

Again, for versions lower than 3.0, we need these custom styles:

dlayer utilities {
\/3 {
flex-basis: 33.333333%;

» Working Demo

Note that though we used basis-1/3, the final width of each column is less than 33% of
the parent because of the margins between the flex items. Each item shrinks by default to

fit into the container.
Now there's a better solution to this:

Better Solution

<div class="container">
<div class="plan mx-4 basis-0 flex-grow flex-shrink"> ... </div>
<div class="plan mx-4 basis-0 flex-grow flex-shrink"> ... </div>

<div class="plan mx-4 basis-0 flex-grow flex-shrink"> ... </div>

</div>

» Working Demo

This is better because if you add four blocks or two blocks instead of three, you don't have

to change the basis-* value. Try removing one of the plans or adding another. They all
take up equal space.

Also, in the previous solution, we don't have flex-shrink and flex-grow specified.
They have their default values. It is always encouraged to set all 3 properties to avoid any
kind of confusion. Very soon we will see how all these three utilities can be combined into
just one.

68

https://play.tailwindcss.com/z67MBk3P24?size=800x500
https://play.tailwindcss.com/zVmsWLf8cf?size=800x500

Spaces between the blocks

One thing to note is that we have added margin to each item to create margins in
between and around the blocks. This creates some margins around the blocks too, and
not just between them. The best solution hence is to use the gap utilities on the flex
container. But the gap CSS property doesn't have a good browser support for flexbox yet,
at the time of writing this. | encourage you to check for browser support and use it
accordingly. | will talk more about this property in the Grid section of this book.

69

Q Flex Shorthand Property

Instead of using three separate utilities flex-grow-*, flex-shrink-* and basis-*, we
can make use of a single flex-* shorthand utility. In the previous example, you can
replace all those three CSS classes with a single class.

<div class="plan mx-4 flex-1">...</div>

Try replacing those 3 classes with just £lex-1 in the previous example and notice that
everything works the same.

Understanding Flex concept

The flex-* utility classes control how flex items both grow and shrink along with
specifying an initial size. In Tailwind CSS, we have four of these utility classes that cover

most of the use cases.

Tailwind CSS Property .
Explanation
Class & Value
Flex item grows and shrinks as needed ignoring the
flex-1 flex: 1 1 0%; initial size. If this is used on multiple items, all the items
take up equal space.
Flex item grows and shrinks as needed considering the
flex-auto flex: 1 1 auto; initial size . If this is used on multiple items, all the items
take up space based on their content.
This is the default. The item shrinks when space is less
flex-initial flex: 0 1 auto; but does not grow when there's space available. Initial
size is auto-calculated.
flex-none flex: none; The item does not grow, nor shrink.

70

Along with these commonly used values available in Tailwind CSS, it's good to understand
the syntax of the CSS flex property if you ever need to customize.

Syntax
flex : <flex-grow> <flex-shrink> <flex-basis>

The flex property may be specified using one, two, or three values separated by spaces.
Let's see how they are interpreted.

One Value
The value can be

® a3 <number>: In this case, itis interpreted as flex-grow
While flex-shrink isassumedtobe 1 and flex-basis isassumed to be 0
Example: flex: 1 issameas flex: 1 1 0%

® 3 <number with units>:Itisinterpreted as flex-basis
While flex-grow isassumedtobe 1 and flex-shrink isassumed to be 1
Example: flex: 10rem iSsameas flex: 1 1 1l0rem

e the keyword initial: Itisinterpreted as
flex: 0 1 auto -the default behaviour

e the keyword auto: Itis interpreted as

flex: 1 1 auto -Similarto initial but the item grows to occupy any additional

space available
® the keyword none: Itis interpreted as

flex: 0 0 auto - neither grows nor shrinks, occupies space based on width and
height properties

Two Values

The first value must be

71

® 3 <number> and itis interpreted as flex-grow
The second value can be

® 3 <number>:ltisinterpreted as flex-shrink OR

® 3 <number with units>:Itisinterpreted as flex-basis

Example: flex: 1 0 issameas flex: 1 0 0% AND flex: 1 1l0rem iSSame as flex:
1 1 10rem

Three Values
The values must be in the following order:

1. @ <number> for flex-grow
2. @ <number> for flex-shrink

3. a <number with units> for <flex-basis>

It is super hard to remember all of these at once, and the good news is - you don't have to!
If you ever need to customize using the flex property, simply use the three-value
syntax in the specified order to avoid confusion. If you are analysing someone else's code,
use the above as a reference.

Now let's look at some examples using the flex-+* utilities.

Navigation Bar with Centered Menu Example 9a

We often come across navigation bars with a logo on the left, one or two buttons on the
right and multiple menu links absolutely centered horizontally. Though it looks simple, it's
not straightforward to implement.

72

(D circleai Home About Us Pricing Products

Notice how the menu is at the exact center of the entire navbar. The distance from menu
to logo and menu to button are not equal. Hence using justify-between is not sufficient
to achieve this. Look at the difference

Menu horizontally centered &

(O circleai Home About Us Pricing Products
(O circleai Home About Us Pricing Products

Menu equally spaced from logo and button

We want to achieve the first result. So how do we do it?

» Try it out

73

https://play.tailwindcss.com/ayRR4c5IIE?size=1000x500

Markup

<header>

<a>

<img

 ...

<button> ... </button>
</ span>
</header>

Solution

If the elements a and span are of same width, then justify-between will help us
achieve the desired result. Luckily, we can make them occupy the same widths with what

we learnt in Example 8c

<header class="flex justify-between items-center">

 ...

<button> ... </button>
</ span>
</header>

Along with the flex-1 utility, we also need text-right forthe span elementto push
the button to the right of the span.

» Working Demo

74

https://play.tailwindcss.com/kwMF9NtnIn?size=1000x500

Image and Text in 2:1 Ratio Example 9b

You must have seen so many components with two elements placed side-by-side with
widths in the ratio 2:1 or 1:2. Here's one such example. The text block is twice the width of

the image and the component is flexible.

Poolside Villas

Enjoy your stay at our property with mesmerizing
views. Relax at the pool while you're pampered by
our staff serving drinks and food of your choice.

See if you can get this working using flex-* utility with an arbitrary value.

» Try it out

Markup

<div class="container">

<div class="details">
</div>

75

https://play.tailwindcss.com/Wane2VJog3?size=950x500

Solution

<div class="container flex ">

<img class="flex-1 w-full object-cover"

<div class="flex-[2] details"> ... </div>
</div>

For the img, we have flex-1 whichis flex: 1 or flex: 1 1 0%.

For the div, we use flex-[2] which translatesto flex: 2 or flex: 2 1 0% and hence

the div occupies twice the width of the image.

Along with flex-1 forthe img, we also need w-full and object-cover to fit the image
in the set space without changing the aspect ratio.

» Working Demo

76

https://play.tailwindcss.com/mBmeg6xWUO?size=950x500

@ Auto Margins

Notifications Menu Item Example 10a
Example contributed by Naresh

Here's an example of a very small component with icon and text on left, and a count on
right

A Notifications 2

Markup

<div class="container">
<i> ... </1>

Notifications

2
</div>

If you can wrap the icon and text within another div, we can achieve this look by using
justify-between . But can you get the same look without editing this HTML?

» Try it out

One way to achieve this is by adding flex-grow to the .text element. Here's another

solution.

77

https://twitter.com/naresh_io
https://play.tailwindcss.com/ACj0u8BIWH?size=700x400

Solution

<div class="container flex align-center">

<i>...</i>

Notifications

2
</div>

We have added ml-auto which is margin-left: auto tothe count element to simply
push it to the right.

» Working Demo

The margin utilities can be used with flex items to extend margins to occupy the extra
space. So, in the above example, the left margin occupies all the extra space on the left,
pushing the element to the right.

If you can recall, we used m-auto to center a single flex item within its container in

Example 4e - Solution 2. This works the same way.

Footer with Multiple Columns Example 10b

This is another common footer structure with logo on the left and a few columns "pushed"
to the right.

‘O circleai Quick Links Contact Us Social

The Company Tagline

78

https://play.tailwindcss.com/4608SM16Cm?size=700x400

Based on what you saw in the previous example, can you get this result using auto

margins?

» Try it out

Markup

<footer>
<div class="footer-col"> ...
<div class="footer-col"> ...
<div class="footer-col"> ...
<div class="footer-col"> ...
</ footer>

Solution

We need to "push" the 2nd column to right

<footer class="flex">
<div class="footer-col"> ... </div>
<div class="footer-col ml-auto"> ... </div>

<div class="footer-col">...</div>

<div class="footer-col">...</div>
</ footer>

» Working Demo

79

https://play.tailwindcss.com/QjSPfF3sCa?size=1000x500
https://play.tailwindcss.com/FF3sACeN78?size=1000x500

m Order

Responsive Navigation Bar Example 11a

Let's look at our Example 9a once again and make it responsive now. Assume that you
have just 3 links in the navigation bar and you want those links to appear in the second
row on mobile screens.

(O circleai Home About Us Pricing

€O circleai

Home About Us Pricing

Markup

<header>

<a>

<img

 ...

<button> ... </button>

</header>

80

Since we follow the mobile first approach in Tailwind CSS, on small screens we first need
to do two things:

1. Change the order of the ul element to appear last
2. Make the ul element occupy full width

Then using the md: prefix,

1. Set the order of ul backto 0
2. Set the width of ul back to auto

If you are aware of the order-* utilities, give this a shot.

» Try it out

Solution

<ul class="order-last flex-[100%] md:order-none md:flex-auto">

» Working Demo

The only new utility here is the order utility.

Understanding Order concept

The order property is also used on a flex item. The value can be any number - positive
or negative. The items with greater order value appear later on the web page compared
to the items with lesser value irrespective of their appearance in the markup.

If no order is specified, by default the value is o for all the elements and they follow the

same order as they appear in HTML.

Some of the common utilities for order are here:

81

https://play.tailwindcss.com/f9ukAKHw5V?size=800x500
https://play.tailwindcss.com/GRFjaZGlYt?size=400x500

Tailwind CSS Property

Explanation
Class & Value

Any number from 1 to 12 are available similarly using
order-1 order: 1;

order-2, order-3

The item gets placed at the beginning because the value is
order-first order: -9999; .

a large negative number.

The item gets placed at the end because the value is a
order-last order: 9999; .

large positive number.
order-none order: 0; This is the default.

Hence when we set order-last tothe ul elementin the example above, only that
element is removed from the normal flow and placed at the end. And for large screens, we
change it back to normal flow using order-none.

82

@ Align self

Product Display Example 12a

This is a card component using flex-col . By default, all the elements are stretched full
width (along the cross axis). But you want the button alone to be pushed to the right
instead of stretching full width.

$220
Comfort Grey Sneakers

Lorem ipsum dolor sit, amet consectetur
adipisicing elit. Dicta cum impedit veniam

Add to Cart

» Try it out

83

https://play.tailwindcss.com/WV3fJlzf7a?size=800x600

Solution

<div class="container flex flex-col">

 ...
<h3> ... </h3>
<p> ... </ p>

<button class="self-end"> ... </button>
</div>

» Working Demo

We are using the utility class self-end, which translates to align-self: flex-end. This

makes only the button align to the end along the cross axis. Remember, main axis and

Cross axis?

Understanding Align Self = concept

The self-* utilities for a flex item are similar to the items-* utilities. These classes

override the items-* classes applied to the parent container. Note that:

1. self-* classes are applied to a flex item, whereas items-* are applied to a flex
container
2. self-* takes effect only on the item it's applied to, whereas items-* works for all

the flex items within the container.

The available utility classes are also similar to items-*.

84

https://play.tailwindcss.com/bfAKatifXF?size=800x600

Tailwind .
CSS Property & Value Explanation

Class

The item is stretched to fill the container
self-stretch align-self: stretch; .

along the cross axis

The item is placed at the center of the
self-center align-self: center; . .

container along the cross axis

The item is placed at the beginning of the
self-start align-self: flex-start; container (at the top for row direction and at

the left for column direction)

The item is placed at the end of the container
self-end align-self: flex-end; (at the bottom for row direction and at the right

for column direction)

The item is positioned such that the base
self-baseline align-self: baseline; aligns to the end of the container (applies only

for row direction)

Let's look at another use-case.

Profile with Rating Example 12b

This is a small variation to the profile card we saw in Example 4b. This one has a rating at
the top right corner of the card. While the image and text are center aligned vertically, the
rating is aligned to the top.

Richard Carl

Graphic Designer

85

Can you get this working?

» Try it out

Markup

<div class="container">

<div> ... </div>

<div class="rating"> ... </div>
</div>

Solution

You need two Tailwind classes for the rating div - one for pushing it to the right
(alignment along main axis) and another for aligning it at the top (alignment along cross axis).

<div class="container flex items-center">

<div> ... </div>

<div class="rating ml-auto self-start">...</div>

</div>

» Working Demo

This example might help you understand why we have a CSS property align-self

(self-+* utility classes) but no property like justify-self because we can simply use

auto margins to space out or align a single item along the main axis.

86

https://play.tailwindcss.com/fzRwtbIaFi?size=600x400
https://play.tailwindcss.com/fH8iy7Avop?size=600x400

@ Align Content

Full Page Testimonials Section Example 13a

Let's say you have a few testimonial cards as flex items wrapped in multiple rows. You
want these items to be center aligned vertically in a full height page.

What people are saying about my eBook

“Just ordered my copy! Shruti is "It's the best e-book experience I've had “I think there is a 0 missing at the end of

‘awesome and | suck at grid on this subject. Might even understand these prices. $8 for this much
No brainer.” this Flex/Grid stuff myself after all." ‘awesomeness? It should be 800I"
- Caleb Porzio - Lucian Tartea - Jimi Wikman

"I love that you have used real world "My CSS Grid abilities arent quite where

‘examples to describe the concepts which 1 want them to be so I'm excited to dive

is very helpful to understand.” into the full release"

Sumudu Siriwardana - Jacob Foster

You might think this is what items-center does. But no. That works only for single row
flex items.

» Try it out

87

https://play.tailwindcss.com/ahqLBm2zHs?size=1100x800

Markup

<div class="container">

<div class="testimonial"> ... </div>

¢l— Four more testimonial divs —
</div>

One of the options is to wrap all the .testimonial elements in another div and center

align that div vertically. But that's an unnecessary addition of an element to the DOM.

Solution

<div class="container flex flex-wrap justify-center content-center">

</div>

» Working Demo

All we need to do is use the content-center utility class instead of items-center.

Understanding Align Content concept

The content-+* utilities are used on the flex container for aligning multi-line flex items
along the cross axis. It works only for flex items that flow into multiple rows or columns.

The available utilities are mentioned below:

88

https://play.tailwindcss.com/oeSZfHWwNC?size=1100x800

Tailwind Class

content-start

content-end

content-center

content-between

content-around

content-evenly

CSS Property & Value

align-content:

align-content:

align-content:

align-content:

align-content:

align-content:

flex-start;

flex-end;

center;

space-between;

space-around;

space-evenly;

Explanation

The items are packed at the beginning of the
container

The items are packed at the end of the
container

The items are packed at the center of the
container

The rows / columns are spaced out as much as
possible with first line at the beginning and last
line at the end

Space at the beginning and the end are half as
much as space between the lines

Space at the beginning, end and between the
lines are same

Note: This property is very rarely used. So it's totally okay if you cannot remember it &)

89

@ Inline Flex

Social Media Icons Example 14a

Example inspired by Ahmad Shadeed's Article

Let's say you want a row of rounded icons with each icon placed at the exact center within
the circle like this.

000

To center each icon within the circle, we can add flex to the circle and center using
justify-center and items-center . Butthat leaves us with the circles stacked one

below the other, instead of next to each other

» Try it out

Markup

<i class="fa fa-twitter"></i>

<i class="fa fa-linkedin"></1i>

<i class="fa fa-github"></i>

90

https://ishadeed.com/
https://ishadeed.com/article/how-i-used-inline-flex-first-time/
https://play.tailwindcss.com/DfZQl1OlpZ?size=500x400

Solution

Now simply change flex to inline-flex

» Working Demo

Understanding Inline Flex concept

All the utilities that we have seen so far, either applied on flex container or on flex items,
affect the flex items in one or other way - by changing their dimensions, position or
alignment within the container. But the utility inline-flex does not affect the flex items.
It makes the flex container itself behave like an inline elementinstead of a block

element.
Tailwind CSS Property & .
Explanation
Class Value
Makes the flex container itself behave like an
inline-flex display: inline-flex;

inline element

91

https://play.tailwindcss.com/IuyXJ1p4ma?size=500x400

That's how we make the icons appear next to each other (inline) in our previous example
where each icon itself is a flex container.

92

Flexbox Unlocked!

Reaching till this point of the book means you have learned about all the things you can do
with flexbox's utilities of Tailwind CSS. Yay! [,

You might not remember everything and that's perfectly normal. Since you learned
through real world examples, you need just a few more revisions before you start using
flexbox like a pro. And you can always look back at these examples for reference.

Let's look at some comprehensive examples each involving multiple flexbox containers in

each component.

93

Comprehensive Examples for Flexbox

Article Preview Example 15a

Challenge from Frontend Mentor

This article preview component is a challenge from the Frontend Mentor website.

Shift the overall look and feel by
adding these wonderful touches to
furniture in your home

Ever been in aroom and felt like something was missing?
Perhaps it felt slightly bare and uninviting. I've got some
simple tips to help you make any room feel complete.

Michelle Appleton
ﬁ 28 Jun 2020 »

This is an example of using flexbox within flexbox. The whole card is a flex container with
with image occupying 40% width and text block occupying 60%. Then the footer in the text
block is another flex container with the author image, name & date and the share icon
being the flex items.

Following the mobile-first approach, make this component responsive, by setting the outer
flex container's direction to column and for larger screens, change it to row.

» Try it out

HINT: Use the utilities flex, flex-col, align-items, ml-auto and arbitrary values for
flex-* to achieve the 40% and 60% widths.

» Working Demo

94

https://www.frontendmentor.io/challenges/article-preview-component-dYBN_pYFT
https://play.tailwindcss.com/6a9wGDkBMz?size=600x700
https://play.tailwindcss.com/Cq9WzaPGpv?size=900x700

Fitness Report Example 15b

Here's a simple fitness report component to test your newly gained flexbox skills

Daily Average Stats

Avg. Steps /day Minutes /day kCal Burnt /day

9,340 94 142

+355 +12 +22
last month last month last month

You again need to use flexbox within flexbox, but this time, column direction within row
direction. Bonus points if you can make it responsive without using media queries.

» Try it out

HINT: Use the utilities flex, flex-wrap, flex-* for the outer flexbox. Use flex-col,
justify-* and min-w-* to allow the blocks to wrap.

» Working Demo

95

https://play.tailwindcss.com/cqQZoAozsV?size=900x700
https://play.tailwindcss.com/FS3prtD4ZH?size=900x700

Tweet Example 15c

There's so much to learn from a single "tweet" design. This is an exact mockup of a tweet
in the timeline on the Twitter web app (except for the font).

Shruti Balasa @shrutibalasa - Sep 26
You are amazing if you take time to comment on a tweet or YouTube video or a
blogpost that has helped you! ("

O 20 n 17 Q 215 N If

Here you will need to create three flexbox containers! One for the entire tweet. Two for
the name, handle, date and options. And third one for the row with actions having "reply",
"retweet" etc.

» Try it out

HINT: Use the utilities flex, justify-*, items-* and auto margins.

» Working Demo

Whoal! This really completes almost everything you can do with CSS flexbox. Take some
time to digest all this, practice some more with other components and layouts you
observe. And then come back to learn CSS Grid.

Caution: Grid is slightly more complex than flexbox! Be prepared.

96

https://play.tailwindcss.com/9Nf4F4QhtB?size=750x500
https://play.tailwindcss.com/l0fEkRPp5A?size=750x500

@ Display Grid & Grid Template Columns

Let's start off with CSS Grid looking at the simplest possible example.
Full Page Gallery Example 16a

Let's say you want to create a gallery page for a resort, listing all the albums in a grid
fashion occupying full screen like this.

COMFORT STAY OUTDOOR ACTIVITIES

LUXURY DINING CHILDREN FRIENDLY

This is surely possible using float, table or flex.Butif you want a simpler solution,
grid is the best option. If you already have an idea about grid or if you wish it to try this
layout any other way, feel free it to give it a shot.

» Try it out

98

https://play.tailwindcss.com/C3cLESh0Pk?size=900x600

Markup

<div class="container min-h-screen">

<div class="item"> ... </div>

¢l— Three more items —
</div>

Solution

Now you need to add two utility classes to the .container element to arrange the child

elements in a grid form.

<div class="container min-h-screen grid grid-cols-2">

</div>

» Working Demo

We just added grid and grid-cols-2 and do you see what happened? Each item

occupies 50% width and all the items add up to fill the entire vertical space (min-height

of the container is 100vh). Now let's understand these utilities one by one.

Understanding Display Grid concept

While flexbox helps us arrange elements in one dimension (row or column), grid is a
method that helps us arrange and align elements in both the dimensions with rows and
columns. Similar to flexbox, we can control the the size, alignment, placement and order
of these elements using grid. Here again, we need at least two elements - a parent

element called grid container and at least one child element called grid item.

In our above example, adding grid class makes the .container element a grid

container.

99

https://play.tailwindcss.com/2NUdVIQIT2?size=900x600

Tailwind CSS Property &

Explanation
Class Value

Setting the display property of an elementto grid
grid display: grid; . . .
makes it a grid container

But this utility alone does not make any difference because it creates one column by
default. We need the next property grid-cols-* to specify the number of columns.

Understanding Grid Template Columns concept

The utilities grid-cols-* is used to specify how many columns you need and of what size
each. Majority of the use cases for grid require creating equal width columns, and hence
Tailwind provides these utility classes where you can create one to twelve columns of

equal width.
Tailwind Class Explanation
grid-cols-1 Creates one grid column occupying full width of the container
grid-cols-2 Creates two grid columns occupying 50% width each
grid-cols-3 Creates three grid columns occupying 33.33% width each

We have such classes available from grid-cols-1 until grid-cols-12.But sometimes
we need grid columns with unequal widths. To understand how to create them using
Tailwind, we need to first understand how this works in CSS.

The CSS Property grid-template-columns & Values

CSS Syntax:

grid-template-columns: <value> <value> ...

100

Using the CSS property grid-template-columns, we can specify the widths of each
columnin %, px, rem etc., separated by spaces. The number of individual values you
specify will be the number of columns created. The previous example of full page gallery

can be achieved in CSS using:
grid-template-columns: 50% 50%

This creates two columns of 50% width each and the rows are automatically created. But if
we need something like 40% and 60% width columns, in we can say:

grid-template-columns: 40% 60%

Since we don't have a Tailwind utility for such values, we can use arbitrary values for

achieving the same output:
grid-cols-[40%,60%]

Note that space is replaced by comma in square brackets. The syntax of grid-template-
columns gets more complex for complex layouts. Let's look into each of them with

appropriate examples.

Layout with Sidebar Example 16b

This is a common layout with a sidebar on left and main content on the right. There are

multiple ways of achieving this, but grid makes it simplest.

101

Sidebar Main Content

Markup

<div class="container min-h-screen">
<div class="sidebar"> ... </div>
<div class="main"> ... </div>

</div>

Solution

We need two columns here - .sidebar with a fixed width and .main that takes up the
remaining space. This is possible with an £r unitin grid-template-columns . Here's the

Tailwind solution:

<div class="container min-h-screen grid grid-cols-[22rem,1fr]">

</div>

102

Along with grid class, we added grid-cols-[22rem,1fr] which translates to grid-

template-columns: 22rem 1fr.So we gettwo columns - first one with fixed 22rem

width and second one which occupies the remaining space.

» Working Demo

The fr Unit

The f£r is short for fraction representing fraction of the remaining space. In flexbox, we

can set flex-grow Of items to a value greater than 0 to make those elements occupy

fractions of the remaining space in the parent container right? The £r unitis quite similar

to that. In our above example, there's only one column with the £r unit, so that column

takes up 100% of the remaining space. We will soon see most of our examples involving

fr units.

Services Grid

Example inspired by Inovatik Template

Example 16c

This is a classic example of grid - listing services or features in a grid format with equal

width columns.

List Building

It's very easy to start creating
email lists for your marketing
actions, give it a try

Admin Control

Rights of users and admins can
easily be managed through the
app's integrated control panel

Campaign Tracker

Campaigns is a feature we've
created since the beginning and
it's at the core of Lomar

Integration Setup

We're providing a step-by-step
integration session to implement
automation in your current flow

103

Analytics Tool

Lomar collects all the necessary
data in order to help you analyse
different situations

Helpline Support

Quality support is our top priority
so please contact us for any
problem you encounter

https://play.tailwindcss.com/8iSRHYofoW?size=1100x650
https://inovatik.com/lomar-business-website-bootstrap-html-template.html

Can you try this out?

» Try it out

Solution

We need three columns of equal width. In Tailwind, we have already seen how simple it is
to do the same.

<div class="container grid grid-cols-3">

<div class="item"> ... </div>
¢l— Five more items here —
</div>

» Working Demo

CSS Solution

But if we have to achieve the same in CSS, we can use the f£r unit. The £r unit helps us
distribute the remaining space (which is all the space in this example) proportionately.

.container {

display: grid;

grid-template-columns: 1fr 1fr 1fr;

So, you can repeat the fr unit as many times as the number of equal sized columns you
need. And, to avoid repetition, we can use the repeat() function in CSS. This function
takes in two inputs. The first one is the number of times you want to repeat and second
one being the value you want to repeat.

104

https://play.tailwindcss.com/eg1ycITwWp?size=1050x600
https://play.tailwindcss.com/tQAQZVPr4Z?size=1050x600

Better Solution

.container {

display: grid;

grid-template-columns: repeat(3, 1fr);

It's good to understand how the grid-cols-* Tailwind utilities work under the hood. But

we're not fully there yet.

105

Quick Bites Menu Example 16d

Usually restaurant menus are displayed in a grid fashion. Here's one such example with
the item name and description on the left and a picture on the right. Here, we want the
items in first column to occupy as much space as possible and the pictures to occupy only
as much space as needed.

Veg Burger

Lorem ipsum dolor sit amet consectetur
adipisicing elit. Velit atque hic eligendi

Tacos

Quos sunt non labore ab dicta ea sequi error,
sapiente asperiores quas.

i

Classic Waffles

Dolorem nesciunt minima reprehenderit natus
nam ipsum ipsa, laudantium.

» Try it out

Markup

<div class="container">
<div class="item"> ... </div>
 ...
<div class="item"> ... </div>
 ...

<div class="item"> ... </div>

 ...
</div>

106

https://play.tailwindcss.com/pSVTHGQ8ii?size=1050x600

Solution

We need two columns of unequal width, so we can use grid-cols-* with arbitrary values
to specify two values separated by commas. As you might have guessed, the first value is
1fr . You can specify a fixed width for the second column. But what's even better is to use
the keyword auto . This keyword lets the content of items decide the size of the column /
row.

<div class="container grid grid-cols-[1fr,auto]">

</div>

» Working Demo

So far we used fixed units, percentage values, £r units and the auto keyword for

specifying grid-cols-* arbitrary values apart from the Tailwind utilities available. There
are few more options that we'll cover under the Advanced Grid Template Values topic.

107

https://play.tailwindcss.com/Wr3hMxUagF?size=1050x600

Q Grid Template Rows

Sticky Footer with Grid Example17a

We already saw how to make a sticky footer using flex. Here's a similar example with an

additional header element. If you can recall, we used flex-col and flex-grow to Create
this.

Header

Main Content

Footer

Try this out with grid if you can guess how it's done.

» Try it out

108

https://play.tailwindcss.com/d9SQv7KC1p?size=1000x700

Markup

<div class="container min-h-screen">

<header> ... </header>

<div class="main"> ... </div>
<footer> ... </footer>
</div>

Solution

Look at the example and observe that we have a single column but multiple rows. This can
be specified using grid-rows-+* instead of grid-cols-*.We need 3 rows - first and third

rows with auto height and the second row occupying all the remaining height.

<div class="container min-h-screen grid grid-rows-[auto,1fr,auto]">

</div>

» Working Demo

Note: This demo works as long as you have only three elements header, footer and

.main. If you add an additional element at the same level, it breaks. Whatever additional

content you want, you need to add it within the .main div.

Understanding Grid Template Rows concept

The property grid-template-rows in CSSis used to specify how many rows you need
and of what size each. Similar to grid-template-columns the height of rows can be
specified in %, px, rem or any valid value for height separated by spaces. The number of
individual values you specify will be the number of rows created.

109

https://codepen.io/thirus/pen/7487f1354f364b808a58eba1faee7395?editors=1100

In all the previous examples we got multiple rows even without using this property. That's
how grid works. Rows are automatically created to accommodate the additional items.
This is called implicit grid. Similarly in our above example, one column is automatically
created that occupies full width by default. We'll look into implicit grids and their sizing in a

while.

In the above example we needed rows of different heights, hence we used arbitrary

values. But if we need equal height rows, we have grid-rows-* utility classes for thatin

Tailwind.
Tailwind Class Explanation
grid-rows-1 Creates one grid row occupying full height of the container
grid-rows-2 Creates two grid rows occupying 50% height each
grid-rows-3 Creates three grid rows occupying 33.33% height each

We will also look at more examples using grid-rows-* after covering a few more
concepts. For now, I'm sure you have a basic idea. And of course, you can use both grid-

col-* and grid-rows-* atthe same time.

110

@ Gap

Pricing Plans with Grid Example 18a

Let's look at the same pricing plans example once again, this time using grid. By now you
know how to create three equal sized blocks (or equal sized columns) with grid. But let's
also look at how to add those spaces between those blocks.

Standard Popular Premium
Monthly Plan Monthly Plan Monthly Plan

$25 $40 $55

First try creating this with grid, and see how you can add some spaces between the items.

» Try it out

Markup

<div class="container">
<div class="plan"> ... </div>

<div class="plan"> ... </div>

<div class="plan"> ... </div>
</div>

M

https://play.tailwindcss.com/5lNICG16oR?size=1000x600

Solution

<div class="container grid grid-cols-3 gap-x-8">

</div>

We have added a gap-x-8 class to add a spacing of 2rem between the columns.

» Working Demo

Understanding Column Gap ' Concept

The gap-x-* utilities set the size of the horizontal gap (also known as gutters) between
columns. Like | mentioned earlier in this book, this property can be used with flexbox too,
but doesn't have good browser support yet. With grid however, it is better supported.
Some of the common utilities for gap-x-* are here:

Tailwind Class CSS Property & Value Explanation

gap-x-0 column-gap: 0; Gap between columns is o
gap-x-4 column-gap: lrem; Gap between columns is 1rem
gap-x-6 column-gap: 1.5rem; Gap between columnsis 1.5rem
gap-x-8 column-gap: 2rem; Gap between columns is 2rem

For all the available gap-x-* utilities, check the docs.

112

https://play.tailwindcss.com/5RoqYuDaVe?size=1000x600
https://tailwindcss.com/docs/gap

Blog Posts Display Example 18b

This is a classic use case for grid - display of blog post cards in a grid format with
horizontal and vertical spacing between each card. Let's create this layout using grid and

also make it responsive.

\E

Blog title 1 Blog title 2 Blog title 3

Lorem ipsum, dolor sit amet consectetur Lorem ipsum, dolor sit amet consectetur Lorem ipsum, dolor sit amet consectetur
adipisicing elit. Nemo assumenda porro adipisicing elit. Nemo assumenda porro adipisicing elit. Nemo assumenda porro
inventore repellendus ipsum. inventore repellendus ipsum. inventore repellendus ipsum.

Read more Read more Read more

W=
‘ ﬁ
. X

B, e
Blog title 4 Blog title 5 Blog title 6
Lorem ipsum, dolor sit amet consectetur Lorem ipsum, dolor sit amet consectetur Lorem ipsum, dolor sit amet consectetur
adipisicing elit. Nemo assumenda porro adipisicing elit. Nemo assumenda porro adipisicing elit. Nemo assumenda porro
inventore repellendus ipsum. inventore repellendus ipsum. inventore repellendus ipsum.
Read more Read more Read more

Check the below link to see how this layout is created with Grid and made responsive
using the mobile first approach. Now see if you can add some horizontal and vertical

spacing between the items using gap-x-* and a similar property gap-y-*.

» Try it out

113

https://play.tailwindcss.com/p8RSdtVx8P?size=1050x650

Markup

<div class="container">

<div class="item"> ... </div>

¢l— Five more item cards —
</div>

Responsive Solution

Using the mobile first approach, we just add a grid class at first. This automatically
creates one column. At sm breakpoint, we change that to two columns using grid-cols-
2 and at md breakpoint, we change it to three columns using grid-cols-3.We also add
spacing of 2rem between columns and rows with gap-x-8 and gap-y-8.

<div class="container grid sm:grid-cols-2 md:grid-cols-3 gap-x-8 gap-
y_8ll>

</div>

» Working Demo

These gap utilities make it very easy to create spacing only between the items and not

around them. If we had to use margin utilities to do the same, we would have to change
those margins at every breakpoint too. Or we would have to use negative margins on the
container. We can also combine both the column and row gap utilities into one single
gap-* Utility.

Better Solution

<div class="container grid sm:grid-cols-2 md:grid-cols-3 gap-8">

</div>

114

https://play.tailwindcss.com/bNVDIofD2N?size=1050x650

Understanding Row Gap concept

The gap-y-* utilities set the size of the vertical gap (also known as gutters) between rows.
Again, this property can be used with flexbox too, but doesn't have good browser support
yet. With grid however, it is better supported. The available utilities are similar to that of
gap-x-* . For all the available values, check the docs.

Understanding Gap concept

The utility gap is used to set the same spacing between rows and columns at once. The
available utilities are similar to that of gap-x-* and gap-y-* . For all the available values,

check the docs.

115

https://tailwindcss.com/docs/gap
https://tailwindcss.com/docs/gap

@Justify Content

Featured Logos in a Grid Example 19a

We have seen a similar example of logos with flexbox. But with flex, you can only align

logos in one direction. You cannot control the alignment in the other direction. That is, we
can space them out horizontally and align them in each row, but we cannot align them
across multiple rows using flexbox. So, if you want them to be displayed in a neat grid
format, you need to use grid. For this example, we also want the logos to be spaced out to
occupy the full width of the container.

@) Logoipsum ® Logoipsum %5 logoipsum’ togo B psum

%Logoipsum Logoipsum @ logoipsum § LoGaIPsUM

If we use grid-cols-4 for this, the container will be divided in four equal columns, so
that will not help us space out the logos to the extreme ends. Instead, let's use grid-
cols-[auto,auto,auto,auto] , Which is same as grid-cols-[repeat(4,auto)].Next,
we need to space them out fully.

» Try it out

In the above link, notice how there's a little gap on the right. We need to change this to
make the logos stretch end-to-end.

116

https://play.tailwindcss.com/IWJmkxQm7e?size=1300x600

Markup

<div class="container grid grid-cols-[repeat(4,auto)] gap-12">

¢l— Seven more img elements —
</div>

Solution
We need one more utility class now - justify-between to space out the columns. This is

similar to what we did with flexbox.

<div class="container grid grid-cols-[repeat(4,auto)] gap-12 justify-

between">

</div>

» Working Demo

This is not yet responsive. We can do that without adding media queries. We will see that

in a while. And now, to notice the difference between flex and grid, change the grid and
grid-cols-* utilitiesto flex and flex-wrap instead.

Understanding Justify Content in Grid Concept

Before we talk about this property with reference to Grid, you need to know two more
terms. In flexbox, you have the main axis and the cross axis. Similarly, while working with
grid, you have the inline axis and the block axis.

Inline axis is the direction in which inline elements like span and img get placed. So
usually it's the row direction. While block axis is the direction in which block elements like

div and section get placed. So it's the vertical axis.

17

https://play.tailwindcss.com/m6sitnPJKW?size=1300x600

BLOCK AXIS

- - e

The justify-+* utilities are used to control placement of the grid items along the

inline/row axis - which is the horizontal direction. In simple terms, this is used to control
the placement and spacing between the grid columns. justify-between is one of the
available utilities we just used. Some more utilities are mentioned below:

118

Tailwind Class CSS Property & Value Explanation

All columns are placed at the beginning of the

justify-start justify-content: flex-start; .
container
All columns are placed at the end of the
justify-end justify-content: flex-end; .
container
justify-center justify-content: center; All columns are placed at the center
All columns are spaced out as much as
possible with first column at the beginning
justify-between justify-content: space-between; . .
and last column at the end (We just saw this
in action)
Space before the columns and after the
justify-around justify-content: space-around; columns are half as much as space between
the columns
Space before, after and between the columns
justify-evenly justify-content: space-evenly;

are same

By default, if the sum total width of all items are smaller than the space available in the
grid container, the auto sized elements' widths are increased equally to fill the container.
This is exactly what's happening in our example before we add the justify-between
class.

In your browser (Chrome or Firefox), use the inspector tool on the Tailwind Play link above
and click on "grid" next to <div class="container"> class="container"> =

This will highlight the grid cells. Before setting the justify-content property, this is what

we see:
@Logojj:;ﬂ,:m ® Logoipsum {’; logoipsum’ L°9°$'Psum
& Logoipsum Logoipsum £ logoipsum ¥ LoGoIPsUM

119

Using grid-cols-* we have set our columns to auto size. Since the widths of all logos
combined is smaller than the width of the container, the remaining space is equally
divided and added to each column. (This is not the same as using the fr unit. If you use
1fr, each column ends up with the same width).

But when we add justify-between, this happens:

@) Logoipsum ® Logoipsum &% logoipsum’ Logo G psum

%Logoipsum Logoipsum @ logoipsum ¥ LoGoIPsUM

The grid cells now take up only as much width required. The remaining space is added to
the grid lines (or grid gaps) instead of the grid cells.

Note : If we use the fr units for specifying the width for any of the grid columns, there is
no space remaining and hence the utilities justify-* will have no effect! Which is why

we used grid-cols-[repeat(4,auto)] instead of grid-cols-4.

Shopping Cart Summary Example 19b

Here's another great example for CSS Grid - a shopping cart summary with each row
containing an image, product description, quantity and price. You can use justify-*
here too, to space out the columns.

} Stylish Tote Bag Quantity -1 $99.00
\ % .
ﬁv‘y Brown Color Women's Tote Bag
W #368798
_ Sunglasses Quantity : E $142.00

6) Glasses with wooden frame
#756328

120

» Try it out

Markup

<div class="container grid grid-cols-[repeat(4,auto)] gap-y-8 gap-x-
4">

<div class="desc"> ... </div>

<div class="qty"> ... </div>

<div class="price"> ... </div>

</div>

Solution

Along with using justify-between property, we also need to add a text-right to the
.price element to align the text in the last column to right.

<div class="container grid grid-cols-[repeat(4,auto)] gap-y-8 gap-x-4
justify-between">

<div class="price text-right">...</div>

<div class="price text-right">...</div>
</div>

» Working Demo

121

https://play.tailwindcss.com/0M3JKUoQEx?size=1100x650
https://play.tailwindcss.com/RZBOQTSKX2?size=1100x650

@ Align Content

Profile Card with Bio & Link Example 20a

Assume you need a profile card with a fixed height containing the profile picture, short bio
and a link - all three elements spaced out equally. This can be achieved using flexbox too,
but the solution with grid is one utility class lesser.

Matt Cooper is a graphic
designer at CircleAi. Lorem ipsum
dolor sit amet consectetur
adipisicing elit.

View Profile

» Try it out

Markup

<div class="card h-96 grid">

<p> ... </ p>
<a>...
</div>

122

https://play.tailwindcss.com/BBEZS8atZo?size=700x600

Solution

For this one, we need only one column, so adding grid to the .card element
automatically creates a grid with one column and three rows with auto heights. Now we
just need to control the vertical spacing using content-* utilities.

<div class="card h-96 grid content-between">

</div>

» Working Demo

Understanding Align Content in Grid Concept

We have seen content-* utilities with respect to flexbox to control spacing between

multiple lines of wrapped items along the cross axis. In Grid, these are used to control
spacing between the rows. content-between is one of the available utilities we just used.

The available utilities are similar to that of justify-*.

The justify-* utilities control placement of columns within container, while content-*
utilities control placement of rows within the container.

123

https://play.tailwindcss.com/23KtQveMrE?size=700x600

Tailwind Class CSS Property & Value Explanation

All rows are placed at the beginning of the
content-start align-content: flex-start;

container
content-end align-content: flex-end; All rows are placed at the end of the container
content-center align-content: center; All rows are pIaced at the center

All rows are spaced out as much as possible
content-between align-content: space-between; with first row at the beginning and last row at

the end (We just saw this in action)

Space before the rows and after the rows are
content-around align-content: space-around;

half as much as space between the rows

Space before, after and between the rows are
content-evenly align-content: space-evenly;

same

Note : These utilities have an effect only when

1. The grid container has a height value that is greater than the sum of individual
row heights
2. And when none of the grid items has a height specified in £r units

Featured Logos Center of Page Example 20b

In Example 19a, we looked at displaying logos in a grid and spacing them horizontally with
justify-between. Now what if we want both the rows to be at the center of the page
vertically?

124

@ Logo ® Logoipsum &5 logoipsum’ Logo R ipsum

QLosoipsum Logoipsum @ logoipsum § LocaipsumM

Note that as soon as you add a height of 100vh to the container, each row stretches to
occupy 50% of the height each and hence the logos are spread out vertically. We need to
bring them closer and place them at the center. Yes, this can be done with content-*

utilities because this controls the placement of the rows.

» Try it out

Markup

<div class="container min-h-screen grid grid-cols-[repeat(4,auto)]
gap-12 justify-between">

¢<l— Seven more img elements —
</div>

Solution

There are surely other ways of doing it, but the simplest solution is to use content-

center along with justify-between.

125

https://play.tailwindcss.com/zsKYNiB5Lc?size=1100x650

<div class="container min-h-screen grid grid-cols-[repeat(4,auto)]

gap-12 justify-between content-center">

</div>

» Working Demo

A small variation

Now assume you don't want the logos to space out horizontally, instead you want them to
be centered horizontally too.

@) Logo ® Logoipsum ¢ logoipsum’ toge @ esum

& Logoipsum Logoipsum £ logoipsum § LoGoIPSUM

Solution

For this, you can use justify-center instead of justify-between.S0O now we have:

126

https://play.tailwindcss.com/lBjmHYCmJ2?size=1100x650

<div class="container ... justify-center content-center">

</div>

Better Solution

<div class="container ... place-content-center">

</div>

We have combined justify-center and content-center iNt0 place-content-center.

Understanding Place Content in Grid concept

The place-content-* utilities allows you to control the spacing of grid items along both
the block and inline axes at once. But this is possible only when you want the placement of
rows and columns to be the same. In the previous example, we wanted the rows AND
columns to be placed at the center of the grid container. Hence we could use the place-

content-* Uutilities. The available utilities are similar to that of justify-* and content-

* .

127

@justify Items

Featured Logos of Different Widths Example 21a

We're back with the same example with yet another variation. Previously all the logos we
used were approximately of the same dimensions, hence it looked good. But if you add
some smaller or wider logos, you need to center align the logos in each column.

@ Logo ® Logoipsum Logo @ tpsum
& Logoipsum [L[e]c]e) £ logoipsum N

In the below link, you can see that the wider logos increase the width of the columns and
by default, the smaller ones are aligned to the left of those columns. Use the inspector
tool to take a closer look at what's happening. How can we center those smaller logos

within the columns?

» Try it out

Markup

<div class="container grid grid-cols-[repeat(4,auto)] gap-12 justify-
between">

¢l— Seven more img elements —
</div>

Solution

There's one new utility class to our rescue - justify-items-*.

128

https://play.tailwindcss.com/3AQKriDMPy?size=1100x650

<div class="container grid grid-cols-[repeat(4,auto)] gap-12 justify-

between justify-items-center">

</div>

» Working Demo

Understanding Justify Items concept

As we now know, CSS Grid creates something similar to a table with rows and columns. If
you have experience with tables (or even simple spreadsheets), you know that adding
more content to any one cell widens that entire column. Same thing happens here too.
And while that happens, all the other cells in that column will have content sticking to the
left of that column by default.

The justify-items-+* utilities allows us to horizontally align the content within the
columns, while the previous utilities justify-* allows us to control spacing of the entire
columns. The available utilities in Tailwind are:

Tailwind Class CSS Property & Value Explanation

All items are placed at the beginning of their

justify-items-start justify-items: start; K

columns (horizontally)

All items are placed at the end of their columns
justify-items-end justify-items: end; .

(horizontally)

All items are placed at the center of their
justify-items-center justify-items: center; K

columns (horizontally)

The items are stretched to occupy full width of
justify-items-stretch justify-items: stretch;

the column if possible

129

https://play.tailwindcss.com/3CO5UDpiSo?size=1100x650

Note : This property does not make sense with flexbox because the elements are laid out

and aligned in only one direction.

Profile Card with Bio & Link Centered Example 21b

We are revisiting Example 20a, this time making everything center aligned horizontally.

Matt Cooper is a graphic
designer at CircleAi. Lorem ipsum
dolor sit amet consectetur
adipisicing elit.

View Profile

» Try it out

Yes, this is possible with mx-auto and text-center applied to grid items individually. But

best solution is to apply styles to the container directly.

130

https://play.tailwindcss.com/23KtQveMrE?size=700x600

Markup

<div class="card h-96 grid content-between">

<p> ... </p>

<a>...
</div>

Solution
We can use the utility justify-items-center on the container to horizontally center

smaller and wider items within each column.

<div class="card h-96 grid content-between justify-items-center text-

center">

</div>

We additionally need a text-center to center align the paragraph.

» Working Demo

131

https://play.tailwindcss.com/UluokyYQDp?size=700x600

@ Align Items

Image and Text Section Example 22a

Example from Inovatik Template

One very common section in web pages is an image on the left half and text on right half
of the page. You need the text and image to be perfectly center aligned vertically for all
large screen sizes. Grid is great for something like this.

Perfect solution
for your small business
Maecenas fringilla quam posuere, pellentesque est nec, gravida

turpis. Integer vitae mollis felis. Integer id quam id tellus hendrerit
laciniad binfer

Sed id dui rutrum, dictum urna eu, accumsan turpis. Fusce id auctor
velit, sed viverra dui rem dina

» Try it out

132

https://inovatik.com/zinc-web-agency-website-bootstrap-html-template.html
https://play.tailwindcss.com/IOV63GjNUy?size=1000x600

Markup

<section class="container min-h-screen grid grid-cols-2 gap-16">

<div> ... </div>

</section>

Solution

Using grid-cols-2 we have created two equal sized columns. Using gap, we have added
some spacing between them. To center align the image and text vertically in the page, we
need to use the items-* utility, very similar to flexbox.

<section class="container min-h-screen grid grid-cols-2 gap-16 items-

center">

</section>

» Working Demo

The benefit of using grid over flexbox for this example is that gap property for grid is

supported in more browsers than for flexbox. Everything else is quite similar.

Understanding Align Items in Grid concept

In grid, we observed earlier that adding more content to any one cell widens that entire
column and increases the height of that row too. And while that happens, all the other
cells in that row will have content sticking to the top of that column by default. Which is
why, in our previous example, when the image is taller than the text, the text is aligned to
the top of the row and when the text is taller than the image, the image is aligned to the

top.

133

https://play.tailwindcss.com/259AfPgDK1?size=1000x600

The items-* utilities allow us to vertically align the content within the rows, while the
previous property content-* allowed us to control spacing of entire rows. We have
already seen the available utilities when we covered this concept with respect to flexbox.

Here they are again, for reference.

Tailwind .
CSS Property & Value Explanation
Class
items-stretch align-items: stretch; All items are stretched to fill the container
All items are aligned to the center of the
items-center align-items: center; .
container
All items are aligned to the beginning of the
items-start align-items: flex-start; container (at the top in case of the above
example)
All items are aligned to the end of the
items-end align-items: flex-end; container (at the bottom in case of the above
example)
All items are positioned such that the base
items-baseline align-items: baseline; aligns to the end of the container (will we

talk about this soon)

Featured Logos of Different Heights Example 22b

Let's look at the same example once again. So far, we used a fixed height h-10 for all the
logos. Now we'll remove that and instead add a max-w-[10rem] (Check the CSS tab). So
now, all the logos have different heights and different widths too. The way we horizontally
center aligned the logos in each column in Example 21a, this time we also need to

vertically center align them in each row.

134

@) Logo © Logoipsum Logo @ Ipsum

% Logoipsum L:[e]c]e) 4 logoipsum A

logoipsum

» Try it out

Markup

<div class="container ... justify-between justify-items-center">

¢l— Seven more img elements —

</div>

Solution
We can use the utility items-center to vertically center the taller and shorter logos

within each row

<div class="container ... justify-between justify-items-center items-

center">

</div>

» Working Demo

135

https://play.tailwindcss.com/5F7YwldSs9?size=1100x650
https://play.tailwindcss.com/PrMvULeQbp?size=1100x650

Summary
justify-between is to space out the entire rows horizontally

justify-items-center is to center align smaller and wider logo horizontally within each

column

items-center is to center align shorter and taller logos vertically within each row

136

@ Place Items

Center a div using Grid Example 23a

We have already seen how easy it is to center a div using flexbox. With grid, it's one lesser

utility class.

I'm at the center of this page

Markup

<div class="container">

<div class="item">

</div>
</div>

Solution

You can either use the previous two utilities justify-items-center and items-center

along with grid. Or you can combine both these using the place-items-* utilities.

137

<div class="container grid place-items-center">
<div class="item">

</div>

</div>

» Working Demo

Understanding Place Items Concept

The place-items-* utilities allows you to align the items horizontally within columns and
vertically within rows at once. But this is possible only when you want the same alignment
in both directions. In the previous example, we wanted the item to be at the center
horizontally and vertically. Hence we could use the place-items-* utilities. The available
utilities are similar to that of justify-items-* and items-*.

138

https://play.tailwindcss.com/EUyR7hSMCa?size=600x400

@ Grid Column Start, End & Span

Horizontal Form Example 24a

Creating forms and making them responsive is so much more easier with grid than any
other tool. Here's the simplest example of a horizontal form with labels on the left, inputs
on the right and a button on the right too. With the knowledge of Grid so far, you can
surely create this component.

Full Name Full Name

Email Address Email Address

Create Account

We can use grid-cols-[auto,lfr] to create two columns as required. But since the
button "Create Account" is the 5th item in the markup, it appears on the first column. How
do we make it appear on the second column instead?

» Try it out

139

https://play.tailwindcss.com/FTNoTkXPkc?size=600x450

Markup

<form class="grid grid-cols-[auto,1fr] items-center gap-y-6 gap-x-12">
<label></1label>
<input .. />

<label></1label>

<input .. />

<button ...>Create Account</button>
</ form>

Solution

Of course, one solution is to add a dummy element in HTML before the button, but that's
definitely not a good practice. And there's a simple utility class available for this:

<form class=" ...

<button class="col-start-2" ...>Create Account</button>
</ form>

» Working Demo

We have used col-start-2 on the grid item to change the column it appears in. Let's

learn about this.

Understanding Column Start concept

Before we learn more about the col-start-* utilities, we need to learn about grid lines.
When you define a grid using grid-cols-* and/or grid-rows-+*, grid lines are created.
These are nothing but the lines between and around the columns and rows. This picture

explains how the column lines and row lines are numbered.

140

https://play.tailwindcss.com/5YBb5JkK5P?size=650x400

It's important to remember that the line numbers start from 1 and not 0.

All the grid related utilities we saw so far are applied to the grid container. Now, we will
see a few that are applied to the grid items. The col-start-* is one of them. It specifies
the item's start position. Some of the available Tailwind utilities for this are:

Tailwind Class CSS Property & Value Explanation
col-start-1 grid-column-start: 1; The item starts at column line 1
col-start-2 grid-column-start: 2; The item starts at column line 2

Such utilities are available upto col-start-13.

In CSS, you can also use negative values like grid-column-start: -1.Here -1 specifies
the last column line. When negative integers are used, it starts counting the lines in
reverse starting from -1.

In the above example, we col-start-2 because we wanted the button to start from
column line 2. Now observe that if you use col-start-3, it creates a new column and
everything gets messed up. Hence you need to be careful with this utility class.

141

Single Price Grid Component Example 24b

Challenge from Frontend Mentor

This grid component is a challenge from the Frontend Mentor website. This is responsive
with the mobile version having just one column with all three items one below the other.
The desktop version however has two columns, but the first item spans across both the
columns.

Join our community

30-day, hassle-free money back guarantee

Gain access to our full library of tutorials along with expert code reviews.
Perfect for any developers who are serious about honing their skills.

Monthly Subscription Why Us

Tutorials by industry experts
$ 2 9 per month

Peer & expert code review
Coding exercises
Access to our GitHub repos
Community forum
Sign Up Flashcard decks
New videos every week

Full access for less than $1a day

For smaller screens, nothing needs to be done. For larger screens, you can make the first
item span using the col-start-* utility that we just saw along with col-end-*.

» Try it out

142

https://www.frontendmentor.io/challenges/single-price-grid-component-5ce41129d0ff452fec5abbbc
https://play.tailwindcss.com/hfWxBtlNgA?size=800x600

Markup

<div class="container grid sm:grid-cols-2">

<div class="component-header"> ... </div>

<div class="subscription"> ... </div>
<div class="why"> ... </div>
</div>

Solution
Above the “~sm breakpoint, we need to make the .component-header start at column line

1 and end at column line 3.

<div class="container grid sm:grid-cols-2">

<div class="component-header sm:col-start-1 sm:col-end-3"> ... </div>

</div>

» Working Demo

Let's learn about col-end-* utilities and few more ways of getting the same result.

Understanding Column End concept

The utilities col-end-* is another set of grid item's utilities. It specifies the item's end
position. The Tailwind utilities available for this are similar to col-start-+.In CSS, you
can also use a negative integer for grid-column-end, in which case it starts counting the

lines in reverse, starting from -1.

In the above example, we used col-end-3 because we wanted that item to end at

column line 3. You can also use arbitrary value col-end-[-1].

143

https://play.tailwindcss.com/MSKC60Te0R?size=800x600

We can alternatively use another set of utilities col-span-* which can be used to specify
the number of columns to span. This is usually used along with either col-start-* or

col-end-*.

So, another solution to the previous example can be:

<div class="component-header sm:col-start-1 sm:col-span-2">...</div>

This means, start from column line 1 and span across two columns. This is helpful when
you know where to start and how many columns you want the item to span, but don't

want to calculate the end line.

You can also skip the col-start-1 here:

<div class="component-header sm:col-span-2">...</div>

Because the starting column line is 1 by default.

OR even

<div class="component-header sm:col-span-full">...</div>

<div class="component-header sm:col-span-2 sm:col-end-3">...</div>

This means, end at column line 3 by spanning across two columns. Again this is helpful
when you know where to end and how many columns to span, but don't want to calculate

the start line. Don't miss trying out all these in the previous two examples.

144

Understanding Column Span concept

The col-span-+* utilities can be used on a grid item to specify how many columns to
span. This is usually used along with either col-start-* or col-end-*.Butif used
alone, the default start and end lines are considered. The available utilities in Tailwind are
col-span-1 UpPtO col-span-12 along with a helpful col-span-full which makes the

grid item span across all the columns in the grid.

Page Layout with Grid Example 24c

We already saw how to implement a layout with sidebar and sticky footer using grid, which

are the simplest examples of creating full page layouts using grid. Let's look another
layout that combines the above two with a header, sidebar, main content and a footer.

Header

Sidebar Main Content

145

This is a grid layout with 2 columns and 3 rows. The header and footer span across

both the columns.

» Try it out

Markup

<div class="container min-h-screen">
<header> ... </header>
<div class="sidebar"> ... </div>

<div class="main"> ... </div>

<footer> ... </ footer>
</div>

Solution
There are three things we need to do:

1. We have a fixed width sidebar, so the grid-cols-* will have one fixed width value
and 1fr.

2. We will have to use grid-rows-* to control the sizing of the rows because we need
the header and footer to occupy only as much as the content within, so we use auto
for header and footer. And we want the middle row to occupy as much height as
possible, so we use 1fr.

3. And for the header and footer, we use col-span-+* utilities to span two columns.

<div class="container min-h-screen grid grid-cols-[22rem,1fr] grid-

rows-[auto,1fr,auto]">
<header class="col-span-full"> ... </header>

<footer class="col-span-full">...</footer>
</div>

» Working Demo

146

https://play.tailwindcss.com/HkApT03Vh5?size=1050x750
https://play.tailwindcss.com/WitTlBxcgH?size=1050x750

@ Grid Row

Contact Form Example 25a

Let's look a contact form with a couple of fields in the first column and one field in the
second column. Previously we saw grid items spanning across columns, but here one grid
item spans across rows too. The concept is the same.

Full Name Message

Full Name Your Message

Email Address

Email Address

Send a Message

» Try it out

Markup

<form class="grid grid-cols-2 gap-6">
<div>
<label> ... </label>
<input ... />

</div>
<div>
<label> ... </label>

147

https://play.tailwindcss.com/ycQ0cNzeMK?size=800x500

<input ... />

</div>

<div class="message-block">
<label> ... </label>

<textarea> ... </textarea>
</div>
<button> ... </button>
</ form>

Solution

<form class="grid grid-cols-2 gap-6">

<div class="col-start-2 row-start-1 row-end-3">
<label> ...</label>
<textarea> ... </textarea>

</div>

<button class="col-span-full"> ... </button>
</ form>

» Working Demo

We have already learned about the col-start utilities. Now we're using two new utilities

row-start-* and row-end-*.

Understanding Row Start and Row End concept

The utilities row-start-* and row-end-+* are also grid item's properties. row-start-*
specifies the item's start position and row-end-* specifies the item's end position with

respect to row lines.

148

https://play.tailwindcss.com/AyXHH3hb9O?size=800x500

In the previous example, we want the message block to start from row line 1 and end at
row line 3, apart from starting at column line 2. It's important to specify all these row and

column lines.

The available utility classes in Tailwind are similar to that of col-start-* and col-end-*

Understanding Row Span concept

Similar to col-span-* utilities, we also have row-span-* utilities for grid items to specify
how many rows to span. This is usually used along with either row-start-* or row-end-
* . But if used alone, the default start and end lines are considered. The available utilities
in Tailwind are row-span-1 Upto row-span-12 along with a helpful row-span-full
which makes the grid item span across all the columns in the grid.

Note: It's always better to use the start and end utilities instead of span utilities.

Responsive Services Section Example 25b

Example Inspired from Brian Haferkamp's CodePen & User illustrations by Storyset

This is a section with an image and six services presently differently in three different
screen sizes. Mobile layout has one grid column, tablet layout has two grid columns and
desktop layout has three grid columns. But more importantly, the grid items' placements

change. This is quite simple now using col-start, col-end, row-start and row-end.

149

https://codepen.io/brianhaferkamp/full/KLgZJP
https://storyset.com/user

List Building

It's very easy to start creating email lsts for your
marketing actions, give it a try

Campaign Tracker

Campaigns is a feature we've created since the
beginning and its at the core of Lomar

Analytics Tool

Lomar collects all the necessary data to help you
analyse different situations

Admin Control

Rights of users and admins can easily be managed
through the control panel

List Building

It's very easy to start creating email lists for
'your marketing actions, give it a try
Campaign Tracker

Campaigns is a feature we've created since
the beginning and it's at the core of Lomar
Analytics Tool

Lomar collects all the necessary data to help
you analyse different situations

Admin Control

Rights of users and admins can easily be
managed through the control panel

Integration Setup

We're providing a step-by-step integration
session to implement automation

Help Line Support

Quality support is our top priority so please
contact us for any problem you encounter

List Building = Admin Control

Rights of users and admins can easily be
managed through the control panel

It's very easy to start creating email lists for
your marketing actions, give it a try

Campaign Tracker — m Integration Setup

Campaigns is a feature we've created since
the beginning and it's at the core of Lomar

We're providing a step-by-step integration
session to implement automation

Analytics Tool

Lomar collects all the necessary data to [T P Quality support is our top priority so please
help you analyse different situations contact us for any problem you encounter

Help Line Support

» Try it out

Markup

<section class="grid sm:grid-cols-2 md:grid-cols-3 gap-x-8">

<div> ... </div>
<div> ... </div>

</section>

Solution

Following mobile-first approach, we start with one single column, change to two columns
at sm breakpoint and to three columns at md breakpoint.

<section class="grid sm:grid-cols-2 md:grid-cols-3 gap-x-8">
<img class="sm:row-start-1 sm:row-end-3 md:row-end-2 md:col-start-2"
>

<div class="md:col-start-1 md:text-right">

</div>

<div class="sm:col-start-2 md:col-start-3">

</div>
</section>

We have changed the row and column lines for img and both the divs at sm and md
breakpoint. Look at the working demo and carefully observe how it's done.

» Working Demo

151

https://play.tailwindcss.com/vGp1OQ3IXJ?size=980x600
https://play.tailwindcss.com/XGzxCFpNK9?size=1000x600

Testimonials Grid Section Example 25c

Challenge from Frontend Mentor

Here's another example from Frontend Mentor website, but with removed avatars and
names for simplicity. Go for the mobile first approach with just one column and above 1g

breakpoint, try and achieve this layout.

| received a job offer mid-course, and the subjects |
learned were current, if not more so, in the company |
joined. | honestly feel | got every penny’s worth.

“I was an EMT for many years before | joined the bootcamp. I've been looking to make a
transition and have heard some people who had an amazing experience here. | signed up for
the free intro course and found it incredibly fun! | enrolled shortly thereafter. The next 12
weeks was the best - and most grueling - time of my life. Since completing the course, Ive
successfully switched careers, working as a Software Engineer at a VR startup.”

An overall wonderful
and rewarding
experience

“Thank you for the wonderful
experience! | now have a job | really

enjoy, and make a good living while
doing something | love.”

» Try it out

Markup

<section>

<div class="violet"> ... </div>

<div class="gray"> ... </div>
<div class="white"> ... </div>

<div class="dark"> ... </div>

<div class="white-long"> ... </div>

</section>

The team was very
supportive and kept me
motivated

“I started as a total newbie with
virtually no coding skills. | now work as
amobile engineer for a big company.
This was ane of the best investments
I've made in myslf."

Awesome teaching support from TAs who did the
bootcamp themselves. Getting guidance from them and
learning from their experiences was easy.

“The staff seem genuinely concerned about my progress which | find really refreshing. The
program gave me the confidence necessary to be able to go outin the world and present

myself as a capable junior developer. The standard is above the rest. You will get the personal
attention you need from an incredible community of smart and amazing people.”

Such a life-changing
experience. Highly
recommended!

"Before joining the bootcamp, Ive never
written a line of code. | needed some
structure from professionals who can
help me learn programming step by
step. | was encouraged to enroll by a
former student of theirs who can only
say wonderful things about the
program. The entire curriculum and
staff did not disappoint. They were very
hands-on and | never had to wait long
for assistance. The agile team project,
in particular, was outstanding. It took
my learning to the next level in a way
that no tutorial could ever have. In fact,
I've often referred to it during
interviews as an example of my
developent experience. It certainly
helped me land a job as a full-stack
developer after receiving multiple
offers. 100% recommend!”

https://www.frontendmentor.io/challenges/testimonials-grid-section-Nnw6J7Un7
https://play.tailwindcss.com/4G0he6uKFB?size=1400x800

Solution

On mobile, you just have to apply grid and gap-8 to section and everything just
works. Above the 1g breakpoint, you need to create four columns and almost every grid

item needs to be positioned using the row and column lines.

<section class="grid lg:grid-cols-4 gap-8">
<div class="violet lg:col-span-2">...</div>
<div class="gray"> ... </div>
<div class="white lg:row-start-2">...</div>

<div class="dark 1lg:col-span-2">...</div>

<div class="white-long lg:row-start-1 lg:row-span-2 lg:col-start-
4"> ... </div>

Most important is positioning of that .white-long div. You need to mention both the row
lines along with the column line. Here, | have used row-span-2, but you can also use

row-end-3.

» Working Demo

153

https://play.tailwindcss.com/RBxnlnqHGg?size=1400x800

@ Order

Responsive Pricing Plans = Example 26a

Let's look at the Pricing Plans Example again and make it responsive with one change. On

mobile screens, we place the Popular plan first, followed by Standard and Premium
while keeping the order same on desktop.

Popular
Monthly Plan

$40

Standard

Monthly Plan

$25

Premium
Monthly Plan

$55

» Try it out

154

https://play.tailwindcss.com/bhUESrnhk1?size=950x600

One way to approach this is to change the column lines using col-start for mobile and
change it back for larger screens. That surely works, but too confusing. Let's look at
another solution using the order property.

Markup

<div class="container grid sm:grid-cols-3 gap-8">

<div class="plan">...</div>

<div class="plan plan-highlight"> ... </div>
<div class="plan"> ... </div>

<div>

Solution

The .plan-highlight elementis the popular plan that we want to place first on mobile

screens.

<div class="plan plan-highlight order-first sm:order-none"> ... </div>

» Working Demo

On mobile screens, we are placing the popular plan first using order-first and at sm

breakpoint, we are changing back to default order using order-none .

Understanding Order in Grid Concept

The same order utilities that we saw with respect to flexbox can be used for grid items

too. The value can be any number - positive or negative. The items with greater order
value appear later on the web page compared to the items with lesser value irrespective
of their appearance in the markup.

If no order is specified, by default the value is 0 for all the elements and they follow the
same order as they appear in HTML. That's what happens at sm breakpoint.

155

https://play.tailwindcss.com/QhaylWUiP4?size=950x600

@ Advanced Grid Template Values

Pricing Plans with Size Limits Example 27a

In the pricing plans example we saw earlier, you might have noticed that the columns
stretch full width of the container even on mobile screens. But since our content within
each card is too small, a wide card looks bad. So we want to limit the width of each card to
a maximum of say 18rem and also to a minimum of the content within so that it doesn't
shrink below that width.

Standard Popular Premium
Monthly Plan Monthly Plan Monthly Plan

$25 $40 $55

Popular
Monthly Plan

$40

Standard

Monthly Plan

$25

Premium
Monthly Plan

$55

156

» Try it out

HTML

<div class="container grid sm:grid-cols-3 gap-8">
<div class="plan"> ... </div>
<div class="plan plan-highlight"> ... </div>
<div class="plan"> ... </div>

<div>

Solution

There is no pure Tailwind solution for this. We can add a max-w- and min-w- to the

.plan element itself to limit the width of the cards. But then the column width still
remains large which makes it impossible to center align the three cards together on larger
screens. So, here's the perfect solution:

<div class="container
grid
grid-cols-[minmax(auto,18rem)]
sm:grid-cols-[repeat(3,minmax(auto,18rem))]
justify-center
gap-8">

» Working Demo

We have replaced grid-cols-3 with grid-cols-[repeat(3,minmax(auto, 1l8rem))].

In CSS, this is same as:

grid-template-columns: repeat(3, minmax(auto, 18rem))

157

https://play.tailwindcss.com/QhaylWUiP4?size=882x600
https://play.tailwindcss.com/8FxZNRcwhF?size=944x600

Understanding minmax () Concept

The minmax () function takes in two parameters - min and max. It specifies a size range
greater than or equal to min and less than or equal to max. Both these values can be any

length values in px, %, rem or even values like 1fr, min-content Or max-content.

In the previous example, we want the card to be a minimum of the content width and a
maximum of 18rem. That's why we used auto as the value for min and 18rem as the

value for max.

Blog Post Page with Code Snippet Example 27b

Example Inspired from CSS Tricks Article - Preventing a Grid Blowout

We looked at creating a simple page layout with a sidebar using:

grid-cols-[22rem, 1fr]

It's a simple solution and it usually works. But consider this blog post page example with a
similar page layout. Here we need to display a code snippet using a pre tag. And code
snippets can sometimes have long lines of code or comments. When we set max-width-
full and overflow-scroll tothe pre element we expect it to occupy a maximum of

100% width and display a horizontal scrollbar.

158

https://css-tricks.com/preventing-a-grid-blowout/

Blog Post Title Heading 1

Lorem ipsum, dolor sit amet consectetur adipisicing elit. Aut repellat voluptas numquam, est quia recusandae maiores Link 1
quasi, cumque in vero dolor nisi accusantium nobis unde blanditiis. Nemo vero eius saepe! Link 2
Quis saepe exercitationem neque repellendus error incidunt tempora ducimus accusantium recusandae quaerat quia, Link 3

nostrum natus illum. Velit ducimus quibusdam iusto aspernatur odit.

/% A very long comment here that should create a horizontal scrollbar when max width is reached,

.section {
display: grid;
}

L3

Nam reprehenderit voluptates perferendis impedit, perspiciatis quis, mollitia corporis debitis atque aliquid, aspernatur
rerum natus ullam hic necessitatibus quae deleniti esse blanditiis.

But look at this link, resize the window to a smaller width and see what happens.

» Try it out

The main content expands to occupy the full width of the pre element making the whole

page "blowout". But why?

The 1fr value stretches the column to occupy remaining space when the content is small,
but otherwise, the minimum width is auto.So 1fr is actually equivalent to
minmax(auto, 1fr).So, whenyou adda pre element with a huge width, that column
occupies a minimum width of the pre element. Let's look at the solution for this problem:

Solution
<section class="min-h-screen grid grid-cols-[minmax(@,1fr),16rem]">

</section>

» Working Demo

159

https://play.tailwindcss.com/GU707kYQa2?size=1002x600
https://play.tailwindcss.com/0LJuLu2EF0?size=1002x600

Now that the range is 0 to 1fr, it works fine. If none of this makes sense, just remember
one thing - minmax (0, 1£fr) isalways a better option than 1fr.Which is why, if you look
at the Tailwind classes grid-cols-*, their equivalent CSS values are:

Tailwind Class CSS Property & Value
grid-cols-1 grid-template-columns: repeat(l, minmax(0, 1lfr));
grid-cols-2 grid-template-columns: repeat(2, minmax(0, 1fr));

And so on. But you can simply use the grid-cols-* utilities and not worry about any
blowout.

Responsive Grid without Media Queries Example 27c

two breakpoints to change the number of columns? Well, we actually don't need to do
that. Grid has a way to decide how many columns to create based on the space available.
But there's no Tailwind solution for this too. We will be using arbitrary values again.

160

Blog title 1 Blog title 2 Blog title 3

Lorem ipsum, dolor sit amet consectetur Lorem ipsum, dolor sit amet consectetur Lorem ipsum, dolor sit amet consectetur
adipisicing elit. Nemo assumenda porro adipisicing elit. Nemo assumenda porro adipisicing elit. Nemo assumenda porro
inventore repellendus ipsum. inventore repellendus ipsum. inventore repellendus ipsum.

Read more Read more Read more

0

€

Blog title 4 Blog title 5 Blog title 6

Lorem ipsum, dolor sit amet consectetur Lorem ipsum, dolor sit amet consectetur Lorem ipsum, dolor sit amet consectetur
adipisicing elit. Nemo assumenda porro adipisicing elit. Nemo assumenda porro adipisicing elit. Nemo assumenda porro
inventore repellendus ipsum inventore repellendus ipsum. inventore repellendus ipsum.

Read more Read more Read more

HTML

<div class="container">
<div class="item"> ... </div>
¢l— Five more item cards —
</div>

Solution

<div class="container grid grid-cols-[repeat(auto-
fit,minmax(16rem,1fr))] gap-8">

</div>

If you find these arbitrary values too hard to read, feel free to use custom CSS

161

.container {

grid-template-columns: repeat(auto-fit,minmax(16rem,1fr));

» Working Demo

Resize your browser window to see that grid is automatically creating more or less

columns. Let's break this and understand what's happening and how.

Previously we used repeat (3, 1fr) for large screens. Now we have replaced the first

value with auto-fit and second value with minmax(16rem, 1fr).

Now you know what minmax(1l6rem, 1fr) does. It occupies a minimum of 16rem width
no matter what. And if more space is available, it stretches to occupy more width. But

what is auto-fit?

Understanding auto-fit Concept

The keyword auto-fit tells the browser to handle the number of columns and their sizes
such that the elements will wrap when the width is not large enough to fit them in without
any overflow. The 1fr in the second value of repeat ensures thatin case there's more
space available, but not enough to accommodate another full column, that space will be
distributed among the other columns, making sure we aren't left with any empty space at
the end of the row.

How the browser calculates

To understand the above example better, assume we have a screen width of 40rem. The
container has a padding of 2rem on left and right. So, now we're left with

40rem - 4rem = 36rem

This can easily fit one column of 16rem. After one column is placed, we are left with

162

https://play.tailwindcss.com/jQjQLsSitN?size=1000x700

36rem - l6rem = 20rem

Can we fit another column of 16rem along with a gap of 2rem? Yes, we can. So after the
second column is placed, we are left with:

20rem - (l6érem + 2rem) = 2rem

Now we have 2rem of extra space, so that's divided between the two columns and now

each columnis 17rem wide.

On the other hand, if the screen width is 36rem instead of 40rem, trace the same steps
and you'll see that we cannot fit the second column there. So, after subtracting the
container padding, we are left with 32rem - which is the width of that single column.

But you really need not worry about all the above calculation. Ideally you just need one
CSS rule to create a responsive grid layout of equally sized columns.

grid-template-columns: repeat(auto-fit, minmax(<fixed-width-value>,

1fr));

Now consider a scenario where you have just one blog post. How do we prevent it from
filling up the entire row?

Solution

grid-template-columns: repeat(auto-fill, minmax(16rem, 1fr));

» Working Demo

We have replaced the auto-fit keyword with auto-£ill.

163

https://play.tailwindcss.com/ZRj6lpJE5m?size=1000x700

Understanding auto-£ill Concept

This is very similar to auto-£fit . In our previous example where there are more than 5
blog posts, you will not be able to notice any difference at all. Try for yourself. Both the
keywords give us the same result. But when there are fewer items and more space to fill in

items:

® auto-fit distributes the remaining space leaving no empty space in the row
® auto-fill creates blank columns of the same size as the items.

If this is not clear, this CSS Tricks article - auto-fill vs auto-fit explains it really well.

Now use this method to make these examples responsive without using media queries:

1. Featured Logos in a Grid

2. Responsive Pricing Plans

You decide whether to use auto-fit Or auto-fill.

164

https://css-tricks.com/auto-sizing-columns-css-grid-auto-fill-vs-auto-fit/

@ Grid Auto Flow

Analytics Section Example 28a

Here is a simple section that shows analytics with numbers and labels. Usually we would
create 3 separate div elements for this and each div would contain a number and label.
But we can avoid those additional divs using grid.

11.5k 9.3k 776

Tweets Followers Following

» Try it out

HTML

<section>
11.5k
<p>Tweets</p>

 ...

<p> ... </ p>

 ...

<p> ... </ p>
</section>

165

https://play.tailwindcss.com/qiopqnqjo4?size=900x500

Solution

Clearly we need three columns and two rows for this. But when we create a 3 x 2 grid,
items start getting placed one by one filling first row and then move to second row. We
need to change this default flow, to fill the column first instead of row, by adding the
grid-flow-col utility class:

<section class="grid grid-rows-[auto,auto] grid-flow-col justify-

between">

</section>

» Working Demo

In most of the previous examples, we created columns explicitly using grid-cols-* and

the rows automatically got created based on the content. However, here we are creating
two rows using grid-rows-[auto,auto] . Columns are automatically created based on

the content.

Understanding Grid Auto Flow concept

The CSS property grid-auto-flow specifies the flow in which the grid items get placed
into the rows and columns. By default, the flow is row.Which means, items start getting

placed one by one filling first row and then keep adding more rows.

The Tailwind equivalent for this property with value row is grid-flow-row (The default)
and for column is grid-flow-col (Which we used in our previous example).

166

https://play.tailwindcss.com/r6Ps01mMnf?size=900x500

N\ 4

grid-auto-flow: row

Tailwind
Class

grid-flow-row

grid-flow-col

CSS Property & Value

grid-auto-flow: row;

grid-auto-flow: column;

167

WV
grid-auto-flow: column

Explanation
The items get placed one by one filling one
row after the other

The items get placed one by one filling one
column after the other

€D Justify Self & Align Self

Restaurant Cards with Labels Example 29a

Let's say we need to list restaurants with name, street, label and a picture just like the
screenshot below. You already know how this is done with flexbox. Now let's see how to
do this using grid.

Cheese & Grill Restaurant «id Friendly
St. Marks Street

The Bowl Place Family Restaurant
Rover Lane

» Try it out

Markup

<div class="container grid grid-cols-[auto,auto,1fr]">

<div class="info"> ... </div>

 ...

</div>

168

https://play.tailwindcss.com/vqBjhhDnQM?size=900x500

Solution

<div class="container grid grid-cols-[auto,auto,1fr]">

</div>

» Working Demo

We have created 3 columns where the width of first two columns is auto and the last

columnis 1fr. So, the info and label columns occupy as much space as needed by the
content and the remaining space is assigned to the image column. We have used
justify-self-end on the image to push the image to the right.

Also, since the grid items stretch to occupy full height by default, the label stretches full
height. To prevent this, we have used self-start on the label.

Let's learn more about these two new properties.

Understanding Justify Self and Align Self ' concept

The utilities justify-self-* is used on a grid item. When the content of the item is
smaller than the width of the column, we can use this property to control the alignment

along the row axis (horizontal direction).

The utilities self-* is also used on a grid item. When the content of the item is shorter
than the height of the row, we can use this property to control the alignment along the
block axis (vertical direction).

The available utilities are similar to that of justify-items-* and items-*.

169

https://play.tailwindcss.com/pPXlclAKrj?size=900x500

Caption at the Bottom of Image Example 29b

Here's an example where you wish to place a caption with a transparent overlay on the
image sticking to the bottom. Usually this is done with absolute positioning, but there's
one problem there. When the image is too small (on mobile screen) and the caption
cannot fit in the dimensions, a part of the text gets hidden. But if we implement this with

grid, the image expands to fit the content within.

This is a long caption flowing into two lines or
more.

» Try it out

Markup

<figure>

<figcaption> ... </figcaption>
</ figure>

170

https://play.tailwindcss.com/wR6lhUPMRF?size=900x500

Solution

<figure class="grid">

<figcaption class="col-start-1 col-end-2 row-start-1 row-end-2 self-
end">....</figcaption>

</figure>

» Working Demo

We are trying to create only one grid cells and fit both the items into the same cell using

col-start-1, col-end-2, row-start-1 and row-end-2.That makes the items overlap!
Yes, it's possible to create overlapping elements with grid. So then, we use self-end to
push the caption down to the bottom.

171

https://play.tailwindcss.com/GG5KFZCKzN?size=900x500

Comprehensive Examples for Grid & Flexbox

Services Section Example 30a

Example from Inovatik Template

This is a responsive services section in a grid format from a template by Inovatik. On

mobile screens, two columns collapse into one. This a great example of flexbox within a

grid layout.
‘ Business strategy Tech writing services
Based on my experience working with fast growing You've built a software product and now you need to
startups | can offer ideas for your business strategy create your documentation? | am here to help with that

ﬁ Marketing planning é‘ﬂ Teaching videos

While trying to build my personal brand and sell my The easiest way to help someone learn how to use

copywriting services I've learned a few marketing tricks your product is with video tutorials. | can create them
for you
Copywriting services o®e Conference speaking
)

| can create marketing copy, sales literature even blog | can speak at your conference about writing, teaching
posts so don't hesitate to get in touch for a quote and how to create a successful business based on skills

The whole section is a grid with two columns and three rows on desktop. The flow of the

grid is column. And each service is a flex container with the icon and text being flex items.

» Try it out

HINT : Use the utilities grid-rows-* and grid-flow-col for the grid. And make each
grid item a flex container.

» Working Demo

172

https://inovatik.com/nico/index.html
https://play.tailwindcss.com/PtzFWIh13Z?size=1000x600
https://play.tailwindcss.com/43FOwOu8Ni?size=912x600

Twitter Monthly Summary Card Example 30b
Example contributed by Naresh

Look at this card with one month summary of a Twitter profile along with some profile
info. This is a good example of flexbox and grid together in a component.

@ John Doe O Yo
@johndoe 19K Followers

Follow for Web Development & Productivity Tips &
Resources. Laravel | Vue | Tailwind CSS | UI/UX

Tweets Tweet Impressions
293 182K

Profile Visits Mentions
9242 299

The header part is best implemented with a flex container, although you can choose to
use grid even for that. The statistics at the end is a simple grid layout with two columns

and two rows.

» Try it out

HINT : Use items-* and auto margins within flexbox. Use row-reverse direction for the

followers' images. For the grid, simply use grid-col-* and gap.

» Working Demo

| haven't made this responsive for smaller screens. You can try it out on your own.

173

https://twitter.com/naresh_io
https://play.tailwindcss.com/lJMrOW7Pwp?size=1000x600
https://play.tailwindcss.com/tlaSekROoR?size=1000x600

Social Media Dashboard Example 30c

Part of a challenge from Frontend Mentor

This example is part of the social media dashboard challenge. It's a brilliant example for

grid within grid.

Page Views Profile Views

87 52k

Retweets Total Views

117 1407

Use a grid layout for the entire dashboard. And then, make each grid item also a grid

container.

» Try it out

HINT : Use the utilities grid-cols-*, justify-*, content-*, justify-self -¥, self-*

and gap.

» Working Demo

Check the CSS tab under /* Important */ comments for the solution. | haven't made

this responsive for smaller screens. You can try it out on your own.

174

https://www.frontendmentor.io/challenges/social-media-dashboard-with-theme-switcher-6oY8ozp_H
https://play.tailwindcss.com/YqSnYeuxis?size=1100x600
https://play.tailwindcss.com/2G7yFGJlyd?size=1100x600

Conclusion

Congratulations! 3 You have reached the end of this book. This is a lot of content you
have consumed. | hope you took enough time to practise each of the examples, gave
enough thought to why one approach is better than other and tried to understand every

concept looking at its application.

Do let me know how this book helped you by sending a mail to contact@shrutibalasa.com.
And watch out for updates to the book. Thank you i,

175

mailto:contact@shrutibalasa.com

	Complete Guide to CSS Flex & Grid - Tailwind CSS
	Disclaimer
	About the Author
	Table of Contents
	Introduction
	Time for another approach
	Who is this book for?
	Prerequisites
	What not to expect
	How to use this book?
	Flow of the book
	Newbie's Guide
	Intermediate's Guide
	Tailwind CSS Version Used
	Tailwind Play Links
	Reach Out
	Why Flex and Grid
	The Problem
	What you might already know
	The Solution
	1 Display Flex
	Quotes Side-by-Side Example 1a

	Understanding Display Flex Concept
	2 Justify Content
	Tabs Spaced Out Example 2a

	Understanding Justify Content Concept
	Card with Previous & Next Links Example 2b
	Team Profiles Example 2c

	3 Flex Wrap
	Responsive Team Profiles Example 3a

	Understanding Flex Wrap Concept
	Logos Wrapped Example 3b

	4 Align Items
	Icon and Text Example 4a

	Understanding Align Items Concept
	Profile Card - Small Example 4b
	Services Section Example 4c
	Frequent Questions Example 4d
	Center a div Example 4e

	5 Flex Direction
	Welcome Screen Example 5a

	Understanding Flex Direction Concept
	Main Axis and Cross Axis
	Testimonial Card Example 5b
	Alternating List of Profiles Example 5c

	6 Flex Grow
	Inline Subscribe Form Example 6a

	Understanding Flex Grow Concept
	Sticky Footer Example 6b
	Card with Header & Footer Example 6c
	Tabs Hover Effect Example 6d
	Variable Width Responsive Buttons Example 6e

	7 Flex Shrink
	Itinerary Example 7a

	Understanding Flex Shrink Concept
	Profile Card - Large Example 7b

	8 Flex Basis
	Split Screen Display Example 8a

	Understanding Flex Basis Concept
	Blog Post Display Example 8b
	Pricing Plans Example 8c
	Spaces between the blocks

	9 Flex Shorthand Property
	Understanding FlexConcept
	Navigation Bar with Centered Menu Example 9a
	Image and Text in 2:1 Ratio Example 9b

	10 Auto Margins
	Notifications Menu Item Example 10a
	Footer with Multiple Columns Example 10b

	11 Order
	Responsive Navigation Bar Example 11a

	Understanding Order Concept
	12 Align Self
	Product Display Example 12a

	Understanding Align Self Concept
	Profile with Rating Example 12b

	13 Align Content
	Full Page Testimonials Section Example 13a

	Understanding Align Content Concept
	14 Inline Flex
	Social Media Icons Example 14a

	Understanding Inline Flex Concept
	Flexbox Unlocked!
	Comprehensive Examples for Flexbox
	Article Preview Example 15a
	Fitness Report Example 15b
	Tweet Example 15c

	16 Display Grid & Grid Template Columns
	Full Page Gallery Example 16a

	Understanding Display Grid Concept
	Understanding Grid Template Columns Concept
	The CSS Property grid-template-columns & Values
	Layout with Sidebar Example 16b
	The fr Unit

	Services Grid Example 16c
	Quick Bites Menu Example 16d

	17 Grid Template Rows
	Sticky Footer with Grid Example 17a

	Understanding Grid Template Rows Concept
	18 Gap
	Pricing Plans with Grid Example 18a

	Understanding Column Gap Concept
	Blog Posts Display Example 18b

	Understanding Row Gap Concept
	Understanding Gap Concept
	19 Justify Content
	Featured Logos in a Grid Example 19a

	Understanding Justify Content in Grid Concept
	Shopping Cart Summary Example 19b

	20 Align Content
	Profile Card with Bio & Link Example 20a

	Understanding Align Content in Grid Concept
	Featured Logos Center of Page Example 20b

	Understanding Place Content in Grid Concept
	21 Justify Items
	Featured Logos of Different Widths Example 21a

	Understanding Justify Items Concept
	Profile Card with Bio & Link Centered Example 21b

	22 Align Items
	Image and Text Section Example 22a

	Understanding Align Items in Grid Concept
	Featured Logos of Different Heights Example 22b

	23 Place Items
	Center a div using Grid Example 23a

	Understanding Place Items Concept
	24 Grid Column Start, End & Span
	Horizontal Form Example 24a

	Understanding Column Start Concept
	Single Price Grid Component Example 24b

	Understanding Column End Concept
	Understanding Column Span Concept
	Page Layout with Grid Example 24c

	25 Grid Row
	Contact Form Example 25a

	Understanding Row Start and Row End Concept
	Understanding Row Span Concept
	Responsive Services Section Example 25b
	Testimonials Grid Section Example 25c

	26 Order
	Responsive Pricing Plans Example 26a

	Understanding Order in Grid Concept
	27 Advanced Grid Template Values
	Pricing Plans with Size Limits Example 27a

	Understanding minmax() Concept
	Blog Post Page with Code Snippet Example 27b
	Responsive Grid without Media Queries Example 27c

	Understanding auto-fit Concept
	Understanding auto-fill Concept
	28 Grid Auto Flow
	Analytics Section Example 28a

	Understanding Grid Auto Flow Concept
	29 Justify Self & Align Self
	Restaurant Cards with Labels Example 29a

	Understanding Justify Self and Align Self Concept
	Caption at the Bottom of Image Example 29b

	Comprehensive Examples for Grid & Flexbox
	Services Section Example 30a
	Twitter Monthly Summary Card Example 30b
	Social Media Dashboard Example 30c

	Conclusion
	

