

"Don’t just learn all the things CSS flexbox and grid can do for you.

Instead learn all the things YOU can do with them."

2

Complete Guide to CSS Flex & Grid - Tailwind CSS

Version 1.0

Published Online: November 5, 2021

Copyright © 2021 by Shruti Balasa

All rights reserved. No part of this eBook may be reproduced, distributed, or

transmitted in any form or by any means, including recording, or other electronic or

mechanical methods, without the prior permission of the author, except in the case

of brief quotations embodied in critical reviews and certain other noncommercial

uses permitted by copyright law.

For permission requests, send an email to the author at contact@shrutibalasa.com

3

mailto:contact@shrutibalasa.com

Disclaimer

While every effort has been made by the author to present accurate and up to date

information within this document, it is apparent technologies rapidly change. Therefore,

the author reserves the right to update the contents and information provided herein as

these changes progress. The author takes no responsibility for any errors or omissions if

such discrepancies exist within this document.

The author accepts no responsibility for any consequential actions taken, whether

monetary, legal, or otherwise, by any and all readers of the materials provided.

Readers’ results will vary based on their individual perception of the contents herein, and

thus no guarantees can be made accurately. Therefore, no guarantees are made.

4

About the Author

Shruti Balasa is a full stack web developer and a tech educator. In the first six years of her

career, she worked at a start-up developing 200+ websites starting from static ones to full-

fledged social networking sites and eCommerce websites.

In the past two years, she started sharing her knowledge by creating courses on various

platforms, video tutorials on Youtube and through tech talks.

Follow her on Twitter or visit her website

5

https://twiiter.com/shrutibalasa
https://www.shrutibalasa.com/

Table of Contents
Introduction ... 13

Who is this book for?

How to use this book?

Why Flex & Grid ... 18

Display Flex ... 21

Example 1a : Quotes Side-by-Side

Understanding display : flex

Justify Content .. 24

Example 2a : Tabs Spaced Out

Understanding justify-content

Example 2b : Card with Previous & Next Links

Example 2c : Team Profiles

Flex Wrap ... 29

Example 3a : Responsive Team Profiles

Understanding flex-wrap

Example 3b : Logos Wrapped

Align Items ... 32

Example 4a : Icon and Text

Understanding align-items

6

Example 4b : Profile Card - Small

Example 4c : Services Section

Example 4d : Frequent Questions

Example 4e : Center a div

Flex Direction ... 40

Example 5a : Welcome Screen

Understanding flex-direction

Main Axis and Cross Axis

Example 5b : Testimonial Card

Example 5c : Alternating List of Profiles

Flex Grow .. 48

Example 6a : Inline Subscribe Form

Understanding flex-grow

Example 6b : Sticky Footer

Example 6c : Card with Header & Footer

Example 6d : Tabs Hover Effect

Example 6e : Variable Width Responsive Buttons

Flex Shrink .. 57

Example 7a : Itinerary

Understanding flex-shrink

Example 7b : Profile Card - Large

Flex Basis .. 61

7

Example 8a : Split Screen Display

Understanding flex-basis

Example 8b : Blog Post Display

Example 8c : Pricing Plans

Flex Shorthand Property .. 70

Understanding flex

Example 9a : Navigation Bar with Centered Menu

Example 9b : Image and Text in 2:1 Ratio

Auto Margins .. 77

Example 10a : Notifications Menu Item

Example 10b : Footer with Multiple Columns

Order ... 80

Example 11a : Responsive Navigation Bar

Understanding order

Align Self ... 83

Example 12a : Product Display

Understanding align-self

Example 12b : Profile with Rating

Align Content ... 87

Example 13a : Full Page Testimonials Section

Understanding align-content

Inline Flex ... 90

8

Example 14a : Social Media Icons

Understanding inline-flex

Comprehensive Examples for Flexbox ... 94

Example 15a : Article Preview

Example 15b : Fitness Report

Example 15c : Tweet

Display Grid & Grid Template Columns ... 98

Example 16a : Full Page Gallery

Understanding display: grid

Understanding grid-template-columns

Example 16b : Layout with Sidebar

Example 16c : Services Grid

Example 16d : Quick Bites Menu

Grid Template Rows ... 108

Example 17a : Sticky Footer with Grid

Understanding grid-template-rows

Gap ... 111

Example 18a : Pricing Plans with Grid

Understanding column-gap

Example 18b : Blog Posts Display

Understanding row-gap

Understanding gap

9

Justify Content ... 116

Example 19a : Featured Logos in a Grid

Understanding justify-content in Grid

Example 19b : Shopping Cart Summary

Align Content ... 122

Example 20a : Profile Card with Bio & Link

Understanding align-content in Grid

Example 20b : Features Logos Center of Page

Understanding place-content in Grid

Justify Items .. 128

Example 21a : Featured Logos of Different Widths

Understanding justify-items

Example 21b : Profile Card with Bio & Link Centered

Align Items .. 132

Example 22a : Image and Text Section

Understanding align-items in Grid

Example 22b : Featured Logos of Different Heights

Place Items .. 137

Example 23a : Center a div using Grid

Understanding place-items

Grid Column Start, End & Span ... 139

Example 24a : Horizontal Form

10

Understanding `grid-column-start

Example 24b : Single Price Grid Component

Understanding grid-column-end

Understanding grid-column

Example 24c : Page Layout with Grid

Grid Row .. 147

Example 25a : Contact Form

Understanding grid-row-start & grid-row-end

Understanding grid-row

Example 25b : Responsive Services Section

Example 25c : Testimonials Grid Section

Order ... 154

Example 26a : Responsive Pricing Plans

Understanding order in Grid

Advanced Grid Template Values .. 156

Example 27a : Pricing Plans with Size Limits

Understanding minmax()

Example 27b : Blog Post Page with Code Snippet

Example 27c : Responsive Grid without Media Queries

Understanding auto-fit

Understanding auto-fill

Grid Auto Flow .. 165

11

Example 28a : Analytics Section

Understanding grid-auto-flow

Justify Self & Align Self ... 168

Example 29a : Restaurant Cards with Labels

Understanding justify-self & align-self

Example 29b : Caption at the Bottom of Image

Comprehensive Examples for Grid & Flexbox .. 172

Example 30a : Services Section

Example 30b : Twitter Monthly Summary

Example 30c : Social Media Dashboard

Conclusion .. 175

12

Introduction
CSS flexbox and grid have become two of the most important topics of web design. Most

of the tutorials on the web teach these concepts using some coloured blocks. You get

introduced to all the CSS properties related to these concepts and how they work. But very

rarely you get to see some examples of where and how these are used in the real world.

Without understanding the real world application, learning is incomplete.

Time for another approach

This book takes a completely different approach. I won't teach you the things flex and grid

can do. Instead, I will first show you some components and layouts and make you think

how to build them using the Tailwind CSS utility classes you already know. Now you have a

problem, and you want a solution. That's when I introduce the concepts you "need" to

know.

This is called Problem-Based Learning (PBL) which will not only keep you motivated

throughout the book, but also help you retain the knowledge far better.

Shall we get started?

Who is this book for?
Whether you are a beginner at Tailwind CSS or CSS itself who has never heard of flex and

grid, or someone who knows all the concepts but finding it hard to implement in real

projects or somewhere in between, this book is for you. Even if you're here just to look at

some examples and practise your Tailwind skills, you will find a great collection here.

13

Prerequisites

Throughout this book I will assume that you know the basic concepts of CSS and how to

use Tailwind CSS. You need not be great at it, but you need to know some of the basic

utility classes for width , height , margin , padding , font , color , background ,

border , position , float and concepts of viewport and responsive web design with

Tailwind CSS.

What not to expect

1. I will not be going through the concepts in the order in which they are usually

covered in other tutorials or in the official Tailwind CSS documentation.

2. I will not be talking about installing or setting up Tailwind CSS, configuration, JIT mode

and so on.

3. Do not expect to become an expert at these concepts just by reading the book. You

need to try out each of the examples, try to think of alternate approaches to get the

same output and also think of different similar examples and practise them.

How to use this book?
I value your purchase and time, so I want to make sure you get the best out of this. Of

course, you can skip this section and rush straight to the main content, but I strongly

recommend reading this before you jump in:

Flow of the book

STEP 1 : For every new concept, you will first see an example labelled Example

STEP 2 : You will then see a link ▸ Try it out

14

This is a Tailwind Play link with all the required assets and other styles applied. You can

either give it a shot or skip it. I recommend trying it once or at least looking at the unsolved

output once, so that you'll appreciate and understand the concept I will next present. The

examples are such that, it's usually difficult or impossible to get the desired output

without the knowledge of the concept I will talk about after that example. So don't spend

much time on it and don't get disappointed if you can't get it working.

STEP 3 : I will provide you with the code snippet highlighting the additional utility classes

(usually just a couple of them) you can add to the above Tailwind Play link. Then it works!

Even without knowing the concept, just looking at those class names, you might be able to

make sense of what's happening.

Just in case it didn't work, you can compare your code with the ▸ Working Demo

STEP 4 : Next we will get to explaining the concept and understand the utility classes we

just used, and also look at other utilities related to the same concept. This is labelled

Concept

STEP 5 : You might see some more examples next, to practice the concept that you just

learned with different classes related to the same CSS property. Each of these examples

have working demo links below them.

STEP 6 : And then the cycle continues with new examples and concepts.

The Examples labeled 1a, 1b, 1c and so on are related to Concept 1

Newbie's Guide

If you are completely new to Flexbox and Grid, don't skip any of the steps above. Go

through the examples multiple times if needed, until you understand what's going on.

Please note that the order in which the concepts are covered in this book is very different

from most of the tutorials you will see. So I recommend completing this book fully before

you look into other resources online, to avoid confusion.

15

https://play.tailwindcss.com/

Intermediate's Guide

If you have a little knowledge of the Flex and Grid related to Tailwind CSS classes already,

you can try out each of the examples and directly compare with the working demo. Even if

you got it right, I recommend reading the concept once to reinforce the knowledge you

already have.

Tailwind CSS Version Used

As of releasing this book, the latest version of Tailwind CSS available is v2.2.15. I will be

referring to the available utilities of this version.

If you are using an older version, please do check for availability of the utility classes used

in the examples.

If you are using a newer version, you should not have a problem, unless some utilities get

deprecated. I will try and keep this book updated with the addition of utility classes as and

when a new version of Tailwind CSS is released. Do check back for an updated version.

Also, all the examples use JIT mode.

Tailwind Play Links

1. The examples require a lot of styling with colors, fonts, spacing, width and more.

Adding all these utility classes in HTML will get in the way of learning the necessary

flex and grid utility classes. Hence I have extracted all the general styles using

@apply directive and added them in the custom CSS tab. So, the only utility classes

you will see in HTML are the most important ones.

2. There are some examples where a pure Tailwind solution is not available. In those

cases, I have taken one of three approaches:

1. Generated arbitrary styles using square bracket notation in JIT mode

2. Customized some utility classes in config file (Check config tab wherever

mentioned)

3. Added custom styles in CSS. Look for them after the comment /* Important

16

https://play.tailwindcss.com/3RGufINrei?file=config

Styes */ (Check CSS tab wherever mentioned)

3. Each of these links are private. Kindly do not share these links individually anywhere

else.

Reach Out

Feel free to send a mail to contact@shrutibalasa.com or send a Direct Message on Twitter

- @shrutibalasa:

1. If you find any wrong information in this book. I have spent a lot of weeks in research

but I could still be wrong. Help me correct the info, so that others don't get

misguided.

2. If any of the links are broken or lead to a wrong URL.

3. If you like this book and personally want to let me know how it helped you

!

 Such

mails make my day!

4. If you love to talk about this book in your circle, don't do it for free. Reach out to

become an affiliate.

5. If you are looking for team pricing.

6. If you want to gift this book to a few people and looking for a discount.

17

https://play.tailwindcss.com/3RGufINrei?file=css
mailto:contact@shrutibalasa.com
https://twitter.com/shrutibalasa

Why Flex and Grid
Don't you want to first know what problem we are solving?

The Problem

Any modern web page today looks something like this on a desktop:

Now imagine building this and making it responsive so that it looks great, readable and

accessible on smallest of the phones to the largest of the desktops! Assuming you don't

know flex and grid , how would you approach this layout?

18

What you might already know

Without any styling, the elements follow the normal flow on the web page. That is, the

order in which the elements are specified in your markup is the order in which they

usually appear on the web page - one below the other for block-level elements and one

next to the other for inline or inline-block level elements. With margins and padding, you

can increase or reduce the space between the elements.

Using relative , absolute or fixed positions, you can remove the element from its

normal flow and position it elsewhere relative to itself or the page.

With the float property, you can make block-level elements appear next to each other

but it needs a lot of effort to make full page layouts, like the one above, with just float . If

you have ever tried it, you know the struggle.

Using table , you can achieve the desktop layout easily, but cannot make it responsive.

Now that you understand the problem, let's get to the solution!

The Solution

Here's presenting the two mighty weapons in CSS - Flexbox and Grid. You can lay out

elements on your web page to build responsive layouts in the best way possible with

these. Once you understand and start using these, you will never want to go back to

building layouts using any other way!

Let's start with Flexbox first, looking at some examples and master it fully. Then we see

what we can do using Grid.

19

Flexbox

20

1 Display Flex
Let's look at a very simple example to begin with.

Quotes Side-by-Side Example 1a

Assume you have three motivational quotes to display on your web page in a single row

(on Desktop screen size). You want the blocks to occupy the same height and hence adjust

widths based on the length of each quote. These quotes are randomly picked. You don't

know how long or short each one is, so you cannot specify widths in fixed units for them.

Here's a Play link for you to try achieving this layout using any of the utility classes you

already know:

▸ Try it out

Did you give it a shot? I hope you're convinced that there's no way to achieve this when

you don't know how long each quote will be. Can you believe if I tell you this is possible

with just one utility class? Let's see how.

21

https://play.tailwindcss.com/TMtbOQExus

Solution

You just need to add flex class to the parent container. Here's the full working demo.

Tada!

"

▸ Working Demo

Resize the output panel, rearrange the quotes or add longer ones. Notice how flexible the

blocks are. This is not yet responsive and you can't add too many quotes yet, but we'll get

to those problems soon.

Now that you got a taste of flexbox, let's actually understand what it does.

Understanding Display Flex Concept

Flexbox is a method that helps us arrange elements in one direction (horizontally or

vertically) and control their dimensions, alignments, order of appearance and more. For

this, we need at least two elements - a parent element called flex container and at least

one child element called flex item.

In our above example, the parent element is the flex container, while .quote elements

are the flex items. And as you just saw, adding flex class to any element makes it a flex

container.

Note: Only the immediate child elements of the container become flex items. Children of

flex items are not affected.

<div class="flex">

 <div>!!"!#div>
 <div>!!"!#div>
 <div>!!"!#div>
!#div>

1
2
3
4
5

22

https://play.tailwindcss.com/acMVfuSzYE

Tailwind
Class

CSS Property &
Value

Explanation

flex display: flex;
Setting the display property of an element to flex

makes it a flex container

Once you have a flex container and some flex items, there are multiple other Tailwind

utilities that can be added to these elements to control the dimensions, alignment, spacing

and more. We will be looking at all those classes next, starting with one example for each.

23

2 Justify Content

Tabs Spaced Out Example 2a

Example contributed by Naresh

Let's say you have a few tabs on your page and you want them to space out fully with the

first tab on the extreme left, last tab on the extreme right and the middle ones spaced out

evenly. These tabs have different widths. How would you do it?

You can try this without flexbox if you wish to:

▸ Try it out

I doubt if there is a solution to this without flexbox. Even if you solved this, I'm sure it

wasn't an easy approach. Let's see how we can achieve this with flexbox.

Solution

▸ Working Demo

<div class="menu flex justify-between">
 <a>!!"!#a>
 <a>!!"!#a>
 <a>!!"!#a>
 <a>!!"!#a>
!#div>

1
2
3
4
5
6

24

https://twitter.com/naresh_io
https://play.tailwindcss.com/foLEE0kfJn?size=968x720
https://play.tailwindcss.com/yBgBSiY4Pa?size=968x720

Tailwind Class CSS Property & Value Explanation

justify-start justify-content: flex-start;
All items are placed at the beginning of the

container with no spaces

justify-end justify-content: flex-end;
All items are placed at the end of the

container with no spaces

justify-center justify-content: center;
All items are placed at the center with no

spaces

justify-between justify-content: space-between;

All items are spaced out as much as possible

with first item at the beginning and last item

at the end (We just saw this in action)

justify-around justify-content: space-around;

Space before the flex items and after the flex

items are half as much as space between the

items

justify-evenly justify-content: space-evenly;
Space before, after and between the items

are same

Along with the flex class, we need to add just one more class justify-between to the

same element. Let's learn more about these utilities.

Understanding Justify Content Concept

Before we understand these utilities, there's something else you need to know. The

moment we add a flex class to an element, we saw that the children get placed next to

each other in one single row. This is a default behaviour. However, we can place them all

one below the other in a single column instead. We will get to that a little later.

The utility classes justify-* are used to control spacing of the flex items in the direction

they are placed. In our above example, it's the horizontal direction. justify-between is

one of the available utilities we just used. Some more utilities are mentioned below:

25

You can see the difference between these values below:

Open the working demo, resize the output panel and see how the items move.

▸ Working Demo

Let's look at some more examples where these utilities would be helpful.

Card with Previous & Next Links Example 2b

Many times we need two elements at the extreme ends of a section / container, like these

"Prev" and "Next" buttons placed at the extreme ends of a card. This is a great example of

flexbox with justify-* utilities used for alignment.

26

https://play.tailwindcss.com/wJKeQ3KikX?size=970x750

Now that you have seen one example, try this out on your own and cross check with the

working demo.

▸ Try it out ▸ Working Demo

Team Profiles Example 2c

Assume you need to design a "Team" section to display profiles of four people as you can

see below. Notice that there is some space to the extreme right and left. This is best

achieved with flexbox and justify-around class for the container.

27

https://play.tailwindcss.com/YkgLXoIfr8?size=570x650
https://play.tailwindcss.com/44fDGbZuMT?size=570x650

Try it out yourself in the Play link below and then cross check with the working demo.

▸ Try it out ▸ Working Demo

28

https://play.tailwindcss.com/SMza854she?size=1100x500
https://play.tailwindcss.com/60OYmgW2br?size=1100x500

3 Flex Wrap

Responsive Team Profiles Example 3a

The above examples work great with desktop screen sizes. But try resizing the output

panel to a mobile screen size and you will either notice a horizontal scrollbar or the design

breaks in some way. How can we make those items move to next row for smaller screens

like this?

Solution

Here's what you can do. Add another class flex-wrap to the container element:

29

Tailwind Class CSS Property & Value Explanation

flex-wrap flex-wrap: wrap;
Items are wrapped into the next line if
needed

flex-nowrap flex-wrap: nowrap;
Items are not wrapped even if it causes
overflow

flex-wrap-reverse flex-wrap: wrap-reverse;
Items are wrapped in the reverse
direction

▸ Working Demo

Understanding Flex Wrap Concept

The flex-wrap utility class makes the flex items wrap if you run out of space. The default

behaviour is to not wrap, which is why the child items do not move into the next row

automatically.

Let's look at another example.

<div class="container flex justify-around flex-wrap">
 <div class="team-profile">
 !!"
 !#div>
 !!!% Three more team profiles !!&
!#div>

1
2
3
4
5
6

30

https://play.tailwindcss.com/EJ9Bj217Ze?size=600x530

Logos Wrapped Example 3b

Let's say you need to display a few logos of your clients in a row with spaces between and

around them and you want them to be responsive on smaller screens. You can use

justify-around for the spacing and the flex-wrap class to wrap the logos.

First three logos contributed by Gokul

▸ Try it out

Solution

▸ Working Demo

Try out flex-wrap-reverse instead, to see the difference.

<div class="logos flex justify-around flex-wrap">

!#div>

1
2
3
4
5
6

31

https://twitter.com/srigokulkrish
https://play.tailwindcss.com/TdYmObRBIV?size=700x530
https://play.tailwindcss.com/UdIE5SQ7LX?size=540x530

4 Align Items

Icon and Text Example 4a

Example Credits: Inovatik

Let's look at another simple use-case of flexbox. An icon and text placed next to each

other vertically centered.

Without flexbox, can you vertically center align an icon and text like in the above example?

▸ Try it out

You can try adding align-middle class for the .icon . But that's not sufficient. You will

need to add align-middle to the .icon-text too. While you might be okay with this

adjustment, this is better done with flex.

Solution

Instead of the align-middle utilities, add these two classes to the .icon-wrap element.

▸ Working Demo

<div class="icon-wrap flex items-center">
 !!"!#span>
 !!"!#span>
!#div>

1
2
3
4

32

https://inovatik.com/
https://play.tailwindcss.com/HRaPPUhxWC?size=540x530
https://play.tailwindcss.com/WzZ6sDtJiB?size=540x530

Apart from flex , we added just one more utility - items-center . Let's learn more about

this.

Understanding Align Items Concept

The justify-* utilities allow us to control the spacing and alignment of the flex items in

the direction they are placed (Horizontally in all our previous examples). While items-*

utilities allow us to control the alignment in its perpendicular direction. This illustration

might give you a better idea:

This illustration is valid only for the concepts we have learned so far. We will talk about these

directions again soon

In case of all our above examples, justify-* can be used to space out the items

horizontally, and items-* can be used to align items vertically. This is useful especially

when the height of each item is different. items-center is one of the available utilities we

just used. Some more utilities are mentioned below:

33

Tailwind
Class

CSS Property & Value Explanation

items-stretch align-items: stretch; All items are stretched to fill the container

items-center align-items: center;
All items are aligned to the center of the
container

items-start align-items: flex-start;
All items are aligned to the beginning of the
container (at the top in case of the above
example)

items-end align-items: flex-end;
All items are aligned to the end of the
container (at the bottom in case of the above
example)

items-baseline align-items: baseline;
All items are positioned such that the base
aligns to the end of the container (will we
talk about this soon)

You can see the difference between these values below:

▸ Working Demo

To understand the effect of items-baseline value, replace the svg icon with an

alphabet and increase the font size by changing:

34

https://play.tailwindcss.com/epBJLBpXkB?size=1100x530

to

Now you can notice that the base of V is aligned with the base of the word "Baseline",

almost like both of them are placed on an invisible line.

The most used utilities are items-stretch and items-center . So let's look at more of

those examples.

Profile Card - Small Example 4b

Many times we need a component with an avatar and a couple of lines next to it. The

items-center utility is very useful for such requirements:

<svg>!!"!#svg>!#span>1

V!#span>1

35

Try doing this yourself before looking at the working code

▸ Try it out ▸ Working Demo

Services Section Example 4c

When we need to list services as in the below screenshot, the text for one service may

occupy 2 lines and for another it may occupy 1 or 3 lines. But we don't want to set a fixed

height to keep all the boxes the same height. This is the best use case for the default

behaviour of flex items which can also be applied using items-stretch utility class.

▸ Working Demo

In the above link, you can remove the items-stretch class because its the default. To

understand the difference better, change the class to items-end

in the above demo.

<div class="container items-end">1

36

https://play.tailwindcss.com/z78JZRig4i?size=400x530
https://play.tailwindcss.com/sDoa1nfFBW?size=400x530
https://play.tailwindcss.com/ZMdGxCjSfT?size=1200x530

Frequent Questions Example 4d

Example from Inovatik

Look at this example where some questions are preceded by numbers aligned to the top.

Try using one of the items-* utilities to make this happen before looking at the working

demo.

▸ Try it out ▸ Working Demo

37

https://inovatik.com/
https://play.tailwindcss.com/WTXsfxKNCu?size=430x530
https://play.tailwindcss.com/SR7F0T4j6U?size=430x530

Center a div Example 4e

This is something you will always encounter. You want to center a div or any element

within its parent, but there's no straightforward way to center it both horizontally and

vertically. With flexbox, using the justify-* and items-* utilities, it's super easy.

Solution 1

We have a container occupying full screen using w-full and h-screen . Within this, is

one .item div that we wish to center within the container. Adding flex utility to the

parent makes it a flex container and the .item becomes a flex child. In all the previous

examples, we always used more than one flex item. But in this example we need only one.

Adding justify-center and items-center positions the child item at the center of the

page horizontally and vertically.

▸ Working Demo

<div class="w-full h-screen flex justify-center items-center">
 <div class="item">!!"!#div>
!#div>

1
2
3

38

https://play.tailwindcss.com/gF3sBxJSmJ?size=450x630

Try changing the width and height of the parent div in the link above to see how the

.item still remains at the center of the container.

Solution 2

There's another way you could achieve the same result

▸ Working Demo

Here, instead of using justify-center and items-center on container, we have used

m-auto utility on the flex item to set the CSS margin property to auto . You can use any

of the two methods above that suits you.

<div class="w-full h-screen flex">
 <div class="item m-auto">!!"!#div>
!#div>

1
2
3

39

https://play.tailwindcss.com/O59Cb45x76?size=450x630

5 Flex Direction

Welcome Screen Example 5a

Here's an example you will come across a lot. Two or more items vertically centered within

its container.

Using the flexbox concepts you just learnt, or without flexbox, can you make this happen?

▸ Try it out

40

https://play.tailwindcss.com/uOca1S7tjw?size=550x630

Possible Solution

There are multiple approaches to this. In case you used the concepts your learned so far,

you might have tried adding an additional div within wrapper and added flex and

items-center to the wrapper. Additionally adding block utilities to the links.

While the above solution works, it's a long one! There's a better approach. You can instead

try this:

Better Solution

Simple add the flex , flex-col and justify-center classes to the parent div:

▸ Working Demo

Confused? You better be # Let's understand what just happened.

<div class="wrapper flex items-center">
 <div class="w-full">
 Login!#a>
 Create account!#a>
 !#div>
!#div>

1
2
3
4
5
6

<div class="wrapper flex flex-col justify-center">
 Login!#a>
 Create account!#a>
!#div>

1
2
3
4

41

https://play.tailwindcss.com/evRPFKUqeI?size=550x630

Tailwind Class CSS Property & Value Explanation

flex-row flex-direction: row;
This is the default behaviour. All items are

placed in a single row from left to right

flex-col flex-direction: column;
All items are placed in a single column from top

to bottom

flex-row-reverse flex-direction: row-reverse;
All items are placed in a single row from right
to left

flex-col-reverse flex-direction: col-reverse;
All items are placed in a single column from

bottom to top

Understanding Flex Direction Concept

The first thing we learnt here was that adding flex utility makes all the child elements get

laid out in one direction. By default they all get placed in a single row. To change that row

direction to a column instead, we can use the flex-col utility along with flex .

Some more utilities related to the flex direction are:

At first, it appears that using flex-col with flex is same as the normal flow of the web

page. Without flexbox, this is how the elements are placed anyway. Then why do we need

this? Like we just saw in Example 5a above, this is the best way to vertically align those two

buttons in the center of the container. There are few more use cases of flex-col that we

will explore further.

Before that, I want you to notice one thing. In the above example, we used justify-

center to center the items vertically. In Example 4a and Example 4b , we used items-

center to center the items vertically! Now why is that?

42

Main Axis and Cross Axis

When the flex direction is row , X axis is the main axis and Y axis is the cross axis. But for

flex direction column , Y axis is the main axis and X axis is the cross axis.

The justify-* utilities control spacing and alignment along the main axis, while the

items-* utilities control alignment along the cross axis. In Example 5a, our flex direction

is column . So vertically centering needs alignment along its main axis. That's why we need

to use justify-center .

This concept requires some practice. Let's look at more examples now.

Testimonial Card Example 5b

Assume you have a testimonial card with fixed height. Within the card, there's a quote icon

at the top, customer name at the bottom and the testimonial text at the middle. The

testimonial text can vary in length, but needs to be equally spaced from the icon and the

name.

43

Now use the flex-col class along with few more necessary classes and see if you can get

the desired result.

▸ Try it out

Solution

We need to apply 4 utility classes to to the container .card

▸ Working Demo

<div class="card flex flex-col justify-between items-start">

 <p>!!"!#p>
 !!"!#span>
!#div>

1
2
3
4
5

44

https://play.tailwindcss.com/lKzHC0OJe3?size=500x600
https://play.tailwindcss.com/AyZfnrBTJd?size=500x600

By default, the flex items stretch along the cross axis. So without the items-start class,

the icon image stretches full width because that's the cross axis when column direction is

used. The utility class justify-between is what makes the child items space out vertically

as required.

Try adding more lines to the testimonial text or removing some lines. You will notice that

the text still remains equally spaced from the icon and name, as required.

Alternating List of Profiles Example 5c

Let's say you have to list some profiles on your page. To break the monotony, you'd like to

alternate the photos and text like this.

One way is to directly change the order in HTML.

45

Markup

But if you have a long list and suddenly you wish to insert another profile somewhere in

between, you will have to again reverse the order in the markup for all the profiles that

appear after that.

Using flex-row-reverse only for even child items, you can achieve this without

changing the order.

▸ Try it out

Solution

▸ Working Demo

<div class="profile">

 <div>!!"!#div>
!#div>
<div class="profile">

 !!!% Reverse the order !!&
 <div>!!"!#div>

!#div>

1
2
3
4
5
6
7
8
9

<div class="profile flex items-center even:flex-row-reverse even:text-
right">

 <div>!!"!#div>
!#div>

1

2
3
4

46

https://play.tailwindcss.com/p4wn58CHMa?size=750x600
https://play.tailwindcss.com/5RSrrFvJ3Z?size=750x600

The even: prefix helps apply the row-reverse direction only the the even child

elements. This solution is helpful when you are using frameworks like Vue, React or

Laravel where you have the profiles data stored in objects and you display them using

loops.

47

6 Flex Grow

Inline Subscribe Form Example 6a

Here is a subscribe form with a text input and a button displayed in a single row. So

flexbox is the best solution, but how do you make the text input occupy all the available

horizontal space of its parent container?

Try out and see how you can make the text input occupy the entire space available while

the Subscribe button takes up only as much space as needed. (Don't take too long trying

because we have a very simple utility class for this)

▸ Try it out

Markup

We already have flex applied on .container . Now we need to add one class to the

input element.

<div class="container flex">

 <input !!">
 <button>!!"!#button>
!#div>

1
2
3
4

48

https://play.tailwindcss.com/lnsalPQOoR?size=800x600

Solution

▸ Working Demo

This just works! Resize the browser and it's fully responsive.

Notice that until now, we only added classes to the parent element - the flex container.

The class flex-grow is the first one to be used on a child element - the flex item. Now

let's learn more about these utilities.

Understanding Flex Grow Concept

The default behaviour of a flex item is to occupy only as much space as needed by the

content within. It doesn't "grow", because the default value of the CSS flex-grow

property is 0. By adding the flex-grow class to an element, we are changing the

element's flex-grow to 1. In CSS, you can set this to any number greater than 0. This

value is also called the grow factor. You can make the item occupy the left over space (Left

over width in case of row direction, and left over height in case of column direction).

In the previous example, we added the rule flex-grow for the text input. This made the

input field occupy all the left over width in the parent. What if we add the same rule to the

button as well? Try for yourself in the same demo link above.

<input class="flex-grow" !!">1

49

https://play.tailwindcss.com/b8LjLcXE2e?size=800x600

Tailwind
Class

CSS Property
& Value

Explanation

flex-grow flex-grow: 1;
The item grows to occupy remaining space along the main
axis

flex-grow-0 flex-grow: 0;
This is the default. The item occupies only as much space as
needed even if more space is available

Notice how the button also tries to occupy some of the left over horizontal space. Also

notice that we added a grow factor of 1 to both the items, but they don't have equal

widths. This is where it's easy to get confused. Read the next part carefully.

When flex-grow is added to two flex items, the left over space is divided into two parts

and added to the initial widths of those two items. Since the text input's initial width was

more than that of the button, it occupies more space. In Tailwind CSS, we have only two

utility classes available with respect to flex grow.

But if we want to set a higher flex-grow value, we can add it in the config file or use

arbitrary values or add custom styles. What if we add flex-grow: 2 to the text input, but

flex-grow: 1 to the button? This time, the left over space is divided into three equal

parts. Two parts width is added to the text input and one part width to the button $

If this is too confusing, just don't worry. In the next few examples, all of this will become

clear. For now, just remember:

1. flex-grow is a flex item's utility (and not of flex container)

2. It can take any value greater than or equal to 0.

3. The default value is 0, hence the flex item does not grow by default

50

Sticky Footer Example 6b

Ever faced a situation where your main content is too small, making your footer appear

somewhere in the middle of the page instead of at the bottom? The easiest solution to this

is using flexbox for the whole layout, with column direction and adding flex-grow to the

main content.

▸ Try it out

Markup

<div class="container">

 <div class="main">!!"!#div>
 <footer>!!"!#footer>
!#div>

1
2
3
4

51

https://play.tailwindcss.com/glkRm7wS98?size=950x600

We need to first add a min-h-screen to the .container . Otherwise nothing will work.

Then make it a flex container with flex and flex-col . At last, add flex-grow utility to

the .main element.

Solution

▸ Working Demo

If the main content is long enough, the footer is at the bottom as usual. Which is why it's

called a "Sticky Footer". Do check for yourself.

Card with Header & Footer Example 6c

This one is very similar to our previous example. Let's say we have a card of a specific

height - like a blogpost preview with title (as header), an excerpt and a "Read more" button

(as footer). The excerpt might sometimes be small, but you would want your button to

"stick" to the bottom of the card regardless of the height of the excerpt.

<div class="container min-h-screen flex flex-col">
 <div class="main flex-grow">!!"!#div>
 <footer>!!"!#footer>
!#div>

1
2
3
4

52

https://play.tailwindcss.com/rUfPS5AOiR?size=950x600

Since this is very similar to the previous example, I would encourage you to try it out first

before looking at the working demo.

▸ Try it out ▸ Working Demo

Tabs Hover Effect Example 6d

Here's an example of tabs that expand on hover. Each tab has a variable width depending

on the text. Once hovered, the active tab expands while the other two shrink.

53

https://play.tailwindcss.com/4Jc8un7tzc?size=540x600
https://play.tailwindcss.com/MG8HrxaBO0?size=540x600

Can you try and achieve this by changing the flex-grow value on hover (using arbitrary

styles with [])?

▸ Try it out

Markup

Solution

Initially, all the tabs are set to flex-grow: 1 and on hover, we increase the value of

flex-grow to any number depending on how wide you want the active tab to be.

▸ Working Demo

Variable Width Responsive Buttons Example 6e

Consider this example where you have three buttons below a blog post - "Like", "Share"

and "Leave a Comment". You want them to occupy full width of the container and also

want to give importance to the last button by giving it a larger width compared to the

other two buttons.

 !!"!#li>
 !!"!#li>
 !!"!#li>
!#ul>

1
2
3
4
5

<ul class="flex">

 <li class="flex-grow hover:flex-grow-[3]">!!"!#li>
 <li class="flex-grow hover:flex-grow-[3]">!!"!#li>
 <li class="flex-grow hover:flex-grow-[3]">!!"!#li>
!#ul>

1
2
3
4
5

54

https://play.tailwindcss.com/dZC8QF3TUp?size=840x500
https://play.tailwindcss.com/EnhCYS0Xht?size=840x500

And yes, this is very easy with flex-grow . Also, when you set the flex-wrap property to

wrap , you get a responsive solution without using any media queries.

▸ Try it out

Markup

Solution

<div class="container">

 <button type="button">!!"!#button>
 <button type="button">!!"!#button>
 <button type="button">!!"!#button>
!#div>

1
2
3
4
5

<div class="container flex flex-wrap">
 <button type="button flex-grow">!!"!#button>
 <button type="button flex-grow">!!"!#button>
 <button type="button flex-grow-[2]">!!"!#button>
!#div>

1
2
3
4
5

55

https://play.tailwindcss.com/lcmAbsvuan?size=900x500

▸ Working Demo

We will look at more examples that use flex-grow once we learn a couple more

properties.

56

https://play.tailwindcss.com/pH8Ud24h3p?size=900x500

7 Flex Shrink

Itinerary Example 7a

Here's a simple itinerary component with the description on left and time on right.

It looks simple and easy to achieve using flexbox, but because flexbox decides the width of

each child item based on the content within, the time element gets a very little space

making it appear in two lines like this

A HTML solution to this is to wrap the time in <nobr> tags. But can you find a CSS solution

to this problem?

▸ Try it out

Let's see how to get this working using another set of flex item's utility classes flex-

shrink

57

https://play.tailwindcss.com/IHf0CEI25G?size=700x500

Markup

Solution

This will prevent the time span from shrinking.

▸ Working Demo

You might immediately see that flex-shrink is somewhat opposite to flex-grow . Let's

learn about these utilities in detail.

Understanding Flex Shrink Concept

The default behaviour of flex items is to shrink to fit in a single row or a single column of

the container (unless flex-wrap is set to wrap). Hence each item shrinks proportionate

to its initial size. You don't have to get into the exact calculations. A larger element shrinks

more than the smaller one by default. This is because, the default value of flex-shrink

for each flex item is 1.

<div class="container">

 <div>!!"!#div>
 10:00 AM!#span>
!#div>

1
2
3
4

<div class="container flex items-start">
 <div>!!"!#div>
 10:00 AM!#span>
!#div>

1
2
3
4

58

https://play.tailwindcss.com/d9XiAMGTCd?size=700x500

Tailwind
Class

CSS Property
& Value

Explanation

flex-shrink flex-shrink: 1;
This is the default. The item shrinks along the main axis
to fit in a single row.

flex-shrink-0 flex-shrink: 0;
The item does not shrink even if it causes the container
to overflow

In our previous example, we changed this value to 0 using the utility class flex-shrink-

0 , hence preventing the item from shrinking. The other item shrinks to fit. The way grow
factor specifies how much additional space the item should occupy, the shrink factor

specifies how much space should be reduced from the flex item's initial width.

In Tailwind CSS, we have only two utility classes available with respect to flex shrink.

You will mostly never use a shrink factor other than 0 or 1. You would either want the

element to shrink or not. So, you only need to remember these:

1. flex-shrink is a flex item's property

2. It can take any value greater than or equal to 0.

3. The default value is 1, hence the flex item shrinks by default regardless of the

specified width .

Profile Card - Large Example 7b

We saw a small profile card in Example 4b. Since that's small, it's responsive as it is. But if

you add a long description instead of small text, the image on the left shrinks to become

an oval on smaller screens.

59

Can you make the image not shrink?

▸ Try it out

Yes, one solution is to change the width to min-width . It works for this example, but

sometimes we might not know the exact width. Hence its best to use flex-shrink .

Markup

Solution

▸ Working Demo

<div class="profile">

 <div>!!"!#div>
!#div>

1
2
3
4

<div class="profile flex items-center">

 <div>!!"!#div>
!#div>

1
2
3
4

60

https://play.tailwindcss.com/LL7pPN7TmV?size=650x500
https://play.tailwindcss.com/BamUVbR0aJ?size=650x500

8 Flex Basis

Split Screen Display Example 8a

Here's a simplified example of a landing page with a split screen display occupying full

screen. On large screens, the page is split up horizontally and on smaller screens, it's split

up vertically.

61

With the concepts you've learned so far, I'm sure you can make this work. Since Tailwind

CSS uses mobile first approach, you need to first use flex-col to split the screen

vertically for small screens along with height utilities for half height. For wider screens,

you can use the md: prefix and change to flex-row and using width utilities, split the

screen horizontally.

▸ Try it out

Markup

The .container element should be full screen. That's done with w-full and h-screen .

Also, the container's flex direction is set to column on smaller screens and row on large

screens. So this is achieved with flex flex-col md:flex-row .

Then, you can add a h-1/2 to the flex items on small screens. And on large screens, w-

1/2 and change the height back to h-full .

Possible Solution 1

Or, you might can add a flex-grow to both the flex items.

<div class="container">

 <div class="split">!!"!#div>
 <div class="split">!!"!#div>
!#div>

1
2
3
4

<div class="container w-full h-screen flex flex-col md:flex-row">
 <div class="split h-1/2 md:w-1/2 md:h-full">!!"!#div>
 <div class="split h-1/2 md:w-1/2 md:h-full">!!"!#div>
!#div>

1
2
3
4

62

https://play.tailwindcss.com/1GQEJ4ksAW?size=800x600

Possible Solution 2

Both the solutions work for this example. Solution 1 is long but works all the time. Solution

2 is short but might not work for different cases (Example, one split screen contains a

large image).

Better Solution

But basis-1/2 is not yet a utility class in v2.2.15. It will soon be added to v3+. Until then,

we can add custom CSS like this:

▸ Working Demo

So flex-basis property for a flex item is similar to width for flex-row direction and

similar to height for flex-col direction.

<div class="container w-full h-screen flex flex-col md:flex-row">
 <div class="split flex-grow">!!"!#div>
 <div class="split flex-grow">!!"!#div>
!#div>

1
2
3
4

<div class="container w-full h-screen flex flex-col md:flex-row">
 <div class="split basis-1/2">!!"!#div>
 <div class="split basis-1/2">!!"!#div>
!#div>

1
2
3
4

@layer utilities {

 .basis-1\/2 {

 flex-basis: 50%;
 }

}

1
2
3
4
5

63

https://codepen.io/thirus/pen/5d1d76d6b14753218d6de4143d7adaa3?editors=1100

Understanding Flex Basis Concept

The property flex-basis is another one that can be defined on the flex item along with

flex-grow and flex-shrink . Like we already saw in the previous example, this property

sets the initial size of the flex item - that is, width in case of row direction and height in

case of column direction. Along with flex-grow and flex-shrink , this property helps

decide the size of the flex item.

When you set the flex-basis of an item to 100px for example, the item first occupies

100px . And then,

1. If there's more space available AND flex-grow is greater than 0, the item grows to

occupy more than 100px

OR

2. If there's less space AND flex-shrink is greater than 0, the item shrinks to occupy

lesser than 100px

By default, the value of flex-basis is auto , which means the size is auto-calculated

based on the width or height utilities.

Once the basis-* utilities are added to the upcoming version in Tailwind CSS, you can

use it similar to the width and height utilities. Some of the example values are here:

64

Tailwind
Class

CSS Property &
Value

Explanation

basis-auto flex-basis: auto; This is the default value. The size is auto-calculated

basis-0 flex-basis: 0; We will soon see a use-case for 0 value

basis-full flex-basis: 100%; The size is 100%

basis-1/2 flex-basis: 50%;
Percentage values like 25% , 50% , 75% , 33.33% ,
66.67% and so on will be available

basis-24 flex-basis: 6rem
All the fixed values like 6rem that are available for
width and height will be available

Blog Post Display Example 8b

Here's a blog post display example very similar to Example 7b of a large profile card. It has

an image on the left and long text on the right.

65

Markup

Solution

For a version lower than v3, we need the following custom styles too:

▸ Working Demo

<div class="container">

 <div>

 !#div>
 <div>!!"!#div>
!#div>

1
2
3
4
5
6

<div class="container flex items-center">
 <div class="mr-4 basis-20 flex-shrink-0">

 !#div>
 <div>!!"!#div>
!#div>

1
2
3
4
5
6

@layer utilities {

 .basis-20 {

 flex-basis: 5rem;
 }

}

1
2
3
4
5

66

https://play.tailwindcss.com/uGTfIZMspL?size=600x400

Pricing Plans Example 8c

Three equally sized blocks with margins in between is a very common pattern. With all the

concepts we just learnt, this example doesn't look very hard now.

▸ Try it out

Markup

Possible Solution

Set basis-1/3 to all the flex items along with mx-4 for spacing between the plans:

<div class="container">

 <div class="plan">!!"!#div>
 <div class="plan">!!"!#div>
 <div class="plan">!!"!#div>
!#div>

1
2
3
4
5

<div class="container">

 <div class="plan mx-4 basis-1/3">!!"!#div>
 <div class="plan mx-4 basis-1/3">!!"!#div>
 <div class="plan mx-4 basis-1/3">!!"!#div>
!#div>

1
2
3
4
5

67

https://play.tailwindcss.com/XfcfhWRt6E?size=800x500

Again, for versions lower than 3.0, we need these custom styles:

▸ Working Demo

Note that though we used basis-1/3 , the final width of each column is less than 33% of

the parent because of the margins between the flex items. Each item shrinks by default to

fit into the container.

Now there's a better solution to this:

Better Solution

▸ Working Demo

This is better because if you add four blocks or two blocks instead of three, you don't have

to change the basis-* value. Try removing one of the plans or adding another. They all

take up equal space.

Also, in the previous solution, we don't have flex-shrink and flex-grow specified.

They have their default values. It is always encouraged to set all 3 properties to avoid any

kind of confusion. Very soon we will see how all these three utilities can be combined into

just one.

@layer utilities {

 .basis-1\/3 {

 flex-basis: 33.333333%;
 }

}

1
2
3
4
5

<div class="container">

 <div class="plan mx-4 basis-0 flex-grow flex-shrink">!!"!#div>
 <div class="plan mx-4 basis-0 flex-grow flex-shrink">!!"!#div>
 <div class="plan mx-4 basis-0 flex-grow flex-shrink">!!"!#div>
!#div>

1
2
3
4
5

68

https://play.tailwindcss.com/z67MBk3P24?size=800x500
https://play.tailwindcss.com/zVmsWLf8cf?size=800x500

Spaces between the blocks

One thing to note is that we have added margin to each item to create margins in

between and around the blocks. This creates some margins around the blocks too, and

not just between them. The best solution hence is to use the gap utilities on the flex

container. But the gap CSS property doesn't have a good browser support for flexbox yet,

at the time of writing this. I encourage you to check for browser support and use it

accordingly. I will talk more about this property in the Grid section of this book.

69

Tailwind
Class

CSS Property
& Value

Explanation

flex-1 flex: 1 1 0%;
Flex item grows and shrinks as needed ignoring the
initial size. If this is used on multiple items, all the items
take up equal space.

flex-auto flex: 1 1 auto;
Flex item grows and shrinks as needed considering the
initial size . If this is used on multiple items, all the items
take up space based on their content.

flex-initial flex: 0 1 auto;
This is the default. The item shrinks when space is less
but does not grow when there's space available. Initial
size is auto-calculated.

flex-none flex: none; The item does not grow, nor shrink.

9 Flex Shorthand Property
Instead of using three separate utilities flex-grow-* , flex-shrink-* and basis-* , we

can make use of a single flex-* shorthand utility. In the previous example, you can

replace all those three CSS classes with a single class.

Try replacing those 3 classes with just flex-1 in the previous example and notice that

everything works the same.

Understanding Flex Concept

The flex-* utility classes control how flex items both grow and shrink along with

specifying an initial size. In Tailwind CSS, we have four of these utility classes that cover

most of the use cases.

<div class="plan mx-4 flex-1">!!"!#div>1

70

Along with these commonly used values available in Tailwind CSS, it's good to understand

the syntax of the CSS flex property if you ever need to customize.

Syntax

flex : <flex-grow> <flex-shrink> <flex-basis>

The flex property may be specified using one, two, or three values separated by spaces.

Let's see how they are interpreted.

One Value

The value can be

a <number> : In this case, it is interpreted as flex-grow

While flex-shrink is assumed to be 1 and flex-basis is assumed to be 0

Example: flex: 1 is same as flex: 1 1 0%

a <number with units> : It is interpreted as flex-basis

While flex-grow is assumed to be 1 and flex-shrink is assumed to be 1

Example: flex: 10rem is same as flex: 1 1 10rem

the keyword initial : It is interpreted as

flex: 0 1 auto - the default behaviour

the keyword auto : It is interpreted as

flex: 1 1 auto - similar to initial but the item grows to occupy any additional

space available

the keyword none : It is interpreted as

flex: 0 0 auto - neither grows nor shrinks, occupies space based on width and

height properties

Two Values

The first value must be

71

a <number> and it is interpreted as flex-grow

The second value can be

a <number> : It is interpreted as flex-shrink OR

a <number with units> : It is interpreted as flex-basis

Example: flex: 1 0 is same as flex: 1 0 0% AND flex: 1 10rem is same as flex:

1 1 10rem

Three Values

The values must be in the following order:

1. a <number> for flex-grow

2. a <number> for flex-shrink

3. a <number with units> for <flex-basis>

It is super hard to remember all of these at once, and the good news is - you don't have to!

If you ever need to customize using the flex property, simply use the three-value
syntax in the specified order to avoid confusion. If you are analysing someone else's code,

use the above as a reference.

Now let's look at some examples using the flex-* utilities.

Navigation Bar with Centered Menu Example 9a

We often come across navigation bars with a logo on the left, one or two buttons on the

right and multiple menu links absolutely centered horizontally. Though it looks simple, it's

not straightforward to implement.

72

Notice how the menu is at the exact center of the entire navbar. The distance from menu

to logo and menu to button are not equal. Hence using justify-between is not sufficient

to achieve this. Look at the difference

We want to achieve the first result. So how do we do it?

▸ Try it out

73

https://play.tailwindcss.com/ayRR4c5IIE?size=1000x500

Markup

Solution

If the elements a and span are of same width, then justify-between will help us

achieve the desired result. Luckily, we can make them occupy the same widths with what

we learnt in Example 8c

Along with the flex-1 utility, we also need text-right for the span element to push

the button to the right of the span .

▸ Working Demo

<header>

 <a>

 !#a>
 !!" !#ul>

 <button>!!"!#button>
 !#span>
!#header>

1
2
3
4
5
6
7
8
9

<header class="flex justify-between items-center">

 !#a>
 !!" !#ul>

 <button>!!"!#button>
 !#span>
!#header>

1
2
3
4
5
6
7
8
9

74

https://play.tailwindcss.com/kwMF9NtnIn?size=1000x500

Image and Text in 2:1 Ratio Example 9b

You must have seen so many components with two elements placed side-by-side with

widths in the ratio 2:1 or 1:2. Here's one such example. The text block is twice the width of

the image and the component is flexible.

See if you can get this working using flex-* utility with an arbitrary value.

▸ Try it out

Markup

<div class="container">

 <div class="details"> !!" !#div>
!#div>

1
2
3
4

75

https://play.tailwindcss.com/Wane2VJog3?size=950x500

Solution

For the img , we have flex-1 which is flex: 1 or flex: 1 1 0% .

For the div , we use flex-[2] which translates to flex: 2 or flex: 2 1 0% and hence

the div occupies twice the width of the image.

Along with flex-1 for the img , we also need w-full and object-cover to fit the image

in the set space without changing the aspect ratio.

▸ Working Demo

<div class="container flex ">

 <div class="flex-[2] details"> !!" !#div>
!#div>

1
2
3
4

76

https://play.tailwindcss.com/mBmeg6xWUO?size=950x500

10 Auto Margins

Notifications Menu Item Example 10a

Example contributed by Naresh

Here's an example of a very small component with icon and text on left, and a count on

right

Markup

If you can wrap the icon and text within another div , we can achieve this look by using

justify-between . But can you get the same look without editing this HTML?

▸ Try it out

One way to achieve this is by adding flex-grow to the .text element. Here's another

solution.

<div class="container">

 <i>!!"!#i>
 Notifications!#span>
 2!#span>
!#div>

1
2
3
4
5

77

https://twitter.com/naresh_io
https://play.tailwindcss.com/ACj0u8BIWH?size=700x400

Solution

We have added ml-auto which is margin-left: auto to the count element to simply

push it to the right.

▸ Working Demo

The margin utilities can be used with flex items to extend margins to occupy the extra

space. So, in the above example, the left margin occupies all the extra space on the left,

pushing the element to the right.

If you can recall, we used m-auto to center a single flex item within its container in

Example 4e - Solution 2. This works the same way.

Footer with Multiple Columns Example 10b

This is another common footer structure with logo on the left and a few columns "pushed"

to the right.

<div class="container flex align-center">
 <i>!!"!#i>
 Notifications!#span>
 2!#span>
!#div>

1
2
3
4
5

78

https://play.tailwindcss.com/4608SM16Cm?size=700x400

Based on what you saw in the previous example, can you get this result using auto

margins?

▸ Try it out

Markup

Solution

We need to "push" the 2nd column to right

▸ Working Demo

<footer>

 <div class="footer-col">!!"!#div>
 <div class="footer-col">!!"!#div>
 <div class="footer-col">!!"!#div>
 <div class="footer-col">!!"!#div>
!#footer>

1
2
3
4
5
6

<footer class="flex">

 <div class="footer-col">!!"!#div>
 <div class="footer-col ml-auto">!!"!#div>
 <div class="footer-col">!!"!#div>
 <div class="footer-col">!!"!#div>
!#footer>

1
2
3
4
5
6

79

https://play.tailwindcss.com/QjSPfF3sCa?size=1000x500
https://play.tailwindcss.com/FF3sACeN78?size=1000x500

11 Order

Responsive Navigation Bar Example 11a

Let's look at our Example 9a once again and make it responsive now. Assume that you

have just 3 links in the navigation bar and you want those links to appear in the second

row on mobile screens.

Markup

<header>

 <a>

 !#a>
 !!" !#ul>

 <button>!!"!#button>
 !#span>
!#header>

1
2
3
4
5
6
7
8
9

80

Since we follow the mobile first approach in Tailwind CSS, on small screens we first need

to do two things:

1. Change the order of the ul element to appear last

2. Make the ul element occupy full width

Then using the md: prefix,

1. Set the order of ul back to 0

2. Set the width of ul back to auto

If you are aware of the order-* utilities, give this a shot.

▸ Try it out

Solution

▸ Working Demo

The only new utility here is the order utility.

Understanding Order Concept

The order property is also used on a flex item. The value can be any number - positive

or negative. The items with greater order value appear later on the web page compared

to the items with lesser value irrespective of their appearance in the markup.

If no order is specified, by default the value is 0 for all the elements and they follow the

same order as they appear in HTML.

Some of the common utilities for order are here:

<ul class="order-last flex-[100%] md:order-none md:flex-auto"> !!"
!#ul>

1

81

https://play.tailwindcss.com/f9ukAKHw5V?size=800x500
https://play.tailwindcss.com/GRFjaZGlYt?size=400x500

Tailwind
Class

CSS Property
& Value

Explanation

order-1 order: 1;
Any number from 1 to 12 are available similarly using
order-2 , order-3

order-first order: -9999;
The item gets placed at the beginning because the value is
a large negative number.

order-last order: 9999;
The item gets placed at the end because the value is a
large positive number.

order-none order: 0; This is the default.

Hence when we set order-last to the ul element in the example above, only that

element is removed from the normal flow and placed at the end. And for large screens, we

change it back to normal flow using order-none .

82

12 Align Self

Product Display Example 12a

This is a card component using flex-col . By default, all the elements are stretched full

width (along the cross axis). But you want the button alone to be pushed to the right

instead of stretching full width.

▸ Try it out

83

https://play.tailwindcss.com/WV3fJlzf7a?size=800x600

Solution

▸ Working Demo

We are using the utility class self-end , which translates to align-self: flex-end . This

makes only the button align to the end along the cross axis. Remember, main axis and

cross axis?

Understanding Align Self Concept

The self-* utilities for a flex item are similar to the items-* utilities. These classes

override the items-* classes applied to the parent container. Note that:

1. self-* classes are applied to a flex item, whereas items-* are applied to a flex

container

2. self-* takes effect only on the item it's applied to, whereas items-* works for all

the flex items within the container.

The available utility classes are also similar to items-*.

<div class="container flex flex-col">

 !!"!#span>
 <h3>!!"!#h3>
 <p>!!"!#p>
 <button class="self-end">!!"!#button>
!#div>

1
2
3
4
5
6
7

84

https://play.tailwindcss.com/bfAKatifXF?size=800x600

Tailwind
Class

CSS Property & Value Explanation

self-stretch align-self: stretch;
The item is stretched to fill the container
along the cross axis

self-center align-self: center;
The item is placed at the center of the
container along the cross axis

self-start align-self: flex-start;
The item is placed at the beginning of the
container (at the top for row direction and at
the left for column direction)

self-end align-self: flex-end;
The item is placed at the end of the container
(at the bottom for row direction and at the right
for column direction)

self-baseline align-self: baseline;
The item is positioned such that the base
aligns to the end of the container (applies only
for row direction)

Let's look at another use-case.

Profile with Rating Example 12b

This is a small variation to the profile card we saw in Example 4b. This one has a rating at

the top right corner of the card. While the image and text are center aligned vertically, the

rating is aligned to the top.

85

Can you get this working?

▸ Try it out

Markup

Solution

You need two Tailwind classes for the rating div - one for pushing it to the right

(alignment along main axis) and another for aligning it at the top (alignment along cross axis).

▸ Working Demo

This example might help you understand why we have a CSS property align-self

(self-* utility classes) but no property like justify-self because we can simply use

auto margins to space out or align a single item along the main axis.

<div class="container">

 <div>!!"!#div>
 <div class="rating">!!"!#div>
!#div>

1
2
3
4
5

<div class="container flex items-center">

 <div>!!"!#div>
 <div class="rating ml-auto self-start">!!"!#div>
!#div>

1
2
3
4
5

86

https://play.tailwindcss.com/fzRwtbIaFi?size=600x400
https://play.tailwindcss.com/fH8iy7Avop?size=600x400

13 Align Content

Full Page Testimonials Section Example 13a

Let's say you have a few testimonial cards as flex items wrapped in multiple rows. You

want these items to be center aligned vertically in a full height page.

You might think this is what items-center does. But no. That works only for single row

flex items.

▸ Try it out

87

https://play.tailwindcss.com/ahqLBm2zHs?size=1100x800

Markup

One of the options is to wrap all the .testimonial elements in another div and center

align that div vertically. But that's an unnecessary addition of an element to the DOM.

Solution

▸ Working Demo

All we need to do is use the content-center utility class instead of items-center .

Understanding Align Content Concept

The content-* utilities are used on the flex container for aligning multi-line flex items

along the cross axis. It works only for flex items that flow into multiple rows or columns.

The available utilities are mentioned below:

<div class="container">

 <div class="testimonial">!!"!#div>
 !!!% Four more testimonial divs !!&
!#div>

1
2
3
4

<div class="container flex flex-wrap justify-center content-center">
 !!"
!#div>

1
2
3

88

https://play.tailwindcss.com/oeSZfHWwNC?size=1100x800

Tailwind Class CSS Property & Value Explanation

content-start align-content: flex-start;
The items are packed at the beginning of the

container

content-end align-content: flex-end;
The items are packed at the end of the

container

content-center align-content: center;
The items are packed at the center of the

container

content-between align-content: space-between;

The rows / columns are spaced out as much as

possible with first line at the beginning and last

line at the end

content-around align-content: space-around;
Space at the beginning and the end are half as

much as space between the lines

content-evenly align-content: space-evenly;
Space at the beginning, end and between the

lines are same

Note: This property is very rarely used. So it's totally okay if you cannot remember it #

89

14 Inline Flex

Social Media Icons Example 14a

Example inspired by Ahmad Shadeed's Article

Let's say you want a row of rounded icons with each icon placed at the exact center within

the circle like this.

To center each icon within the circle, we can add flex to the circle and center using

justify-center and items-center . But that leaves us with the circles stacked one

below the other, instead of next to each other

▸ Try it out

Markup

 <i class="fa fa-twitter">!#i>
!#a>

 <i class="fa fa-linkedin">!#i>
!#a>

 <i class="fa fa-github">!#i>
!#a>

1
2
3
4
5
6
7
8
9

90

https://ishadeed.com/
https://ishadeed.com/article/how-i-used-inline-flex-first-time/
https://play.tailwindcss.com/DfZQl1OlpZ?size=500x400

Tailwind
Class

CSS Property &
Value

Explanation

inline-flex display: inline-flex;
Makes the flex container itself behave like an
inline element

Solution

Now simply change flex to inline-flex

▸ Working Demo

Understanding Inline Flex Concept

All the utilities that we have seen so far, either applied on flex container or on flex items,

affect the flex items in one or other way - by changing their dimensions, position or

alignment within the container. But the utility inline-flex does not affect the flex items.

It makes the flex container itself behave like an inline element instead of a block

element.

 !!"
!#a>

 !!"
!#a>

 !!"
!#a>

1
2
3
4
5
6
7
8
9

91

https://play.tailwindcss.com/IuyXJ1p4ma?size=500x400

That's how we make the icons appear next to each other (inline) in our previous example

where each icon itself is a flex container.

92

Flexbox Unlocked!
Reaching till this point of the book means you have learned about all the things you can do

with flexbox's utilities of Tailwind CSS. Yay! %

You might not remember everything and that's perfectly normal. Since you learned

through real world examples, you need just a few more revisions before you start using

flexbox like a pro. And you can always look back at these examples for reference.

Let's look at some comprehensive examples each involving multiple flexbox containers in

each component.

93

Comprehensive Examples for Flexbox
Article Preview Example 15a

Challenge from Frontend Mentor

This article preview component is a challenge from the Frontend Mentor website.

This is an example of using flexbox within flexbox. The whole card is a flex container with

with image occupying 40% width and text block occupying 60%. Then the footer in the text

block is another flex container with the author image, name & date and the share icon

being the flex items.

Following the mobile-first approach, make this component responsive, by setting the outer

flex container's direction to column and for larger screens, change it to row .

▸ Try it out

HINT: Use the utilities flex , flex-col , align-items , ml-auto and arbitrary values for

flex-* to achieve the 40% and 60% widths.

▸ Working Demo

94

https://www.frontendmentor.io/challenges/article-preview-component-dYBN_pYFT
https://play.tailwindcss.com/6a9wGDkBMz?size=600x700
https://play.tailwindcss.com/Cq9WzaPGpv?size=900x700

Fitness Report Example 15b

Here's a simple fitness report component to test your newly gained flexbox skills

You again need to use flexbox within flexbox, but this time, column direction within row

direction. Bonus points if you can make it responsive without using media queries.

▸ Try it out

HINT: Use the utilities flex , flex-wrap , flex-* for the outer flexbox. Use flex-col ,

justify-* and min-w-* to allow the blocks to wrap.

▸ Working Demo

95

https://play.tailwindcss.com/cqQZoAozsV?size=900x700
https://play.tailwindcss.com/FS3prtD4ZH?size=900x700

Tweet Example 15c

There's so much to learn from a single "tweet" design. This is an exact mockup of a tweet

in the timeline on the Twitter web app (except for the font).

Here you will need to create three flexbox containers! One for the entire tweet. Two for

the name, handle, date and options. And third one for the row with actions having "reply",

"retweet" etc.

▸ Try it out

HINT: Use the utilities flex , justify-* , items-* and auto margins.

▸ Working Demo

Whoa! This really completes almost everything you can do with CSS flexbox. Take some

time to digest all this, practice some more with other components and layouts you

observe. And then come back to learn CSS Grid.

Caution: Grid is slightly more complex than flexbox! Be prepared.

96

https://play.tailwindcss.com/9Nf4F4QhtB?size=750x500
https://play.tailwindcss.com/l0fEkRPp5A?size=750x500

Grid

97

16 Display Grid & Grid Template Columns
Let's start off with CSS Grid looking at the simplest possible example.

Full Page Gallery Example 16a

Let's say you want to create a gallery page for a resort, listing all the albums in a grid

fashion occupying full screen like this.

This is surely possible using float , table or flex . But if you want a simpler solution,

grid is the best option. If you already have an idea about grid or if you wish it to try this

layout any other way, feel free it to give it a shot.

▸ Try it out

98

https://play.tailwindcss.com/C3cLESh0Pk?size=900x600

Markup

Solution

Now you need to add two utility classes to the .container element to arrange the child

elements in a grid form.

▸ Working Demo

We just added grid and grid-cols-2 and do you see what happened? Each item

occupies 50% width and all the items add up to fill the entire vertical space (min-height

of the container is 100vh). Now let's understand these utilities one by one.

Understanding Display Grid Concept

While flexbox helps us arrange elements in one dimension (row or column), grid is a

method that helps us arrange and align elements in both the dimensions with rows and

columns. Similar to flexbox, we can control the the size, alignment, placement and order

of these elements using grid. Here again, we need at least two elements - a parent

element called grid container and at least one child element called grid item.

In our above example, adding grid class makes the .container element a grid

container.

<div class="container min-h-screen">
 <div class="item">!!"!#div>
 !!!% Three more items !!&
!#div>

1
2
3
4

<div class="container min-h-screen grid grid-cols-2">
 !!"
!#div>

1
2
3

99

https://play.tailwindcss.com/2NUdVIQIT2?size=900x600

Tailwind
Class

CSS Property &
Value

Explanation

grid display: grid;
Setting the display property of an element to grid

makes it a grid container

Tailwind Class Explanation

grid-cols-1 Creates one grid column occupying full width of the container

grid-cols-2 Creates two grid columns occupying 50% width each

grid-cols-3 Creates three grid columns occupying 33.33% width each

But this utility alone does not make any difference because it creates one column by

default. We need the next property grid-cols-* to specify the number of columns.

Understanding Grid Template Columns Concept

The utilities grid-cols-* is used to specify how many columns you need and of what size

each. Majority of the use cases for grid require creating equal width columns, and hence

Tailwind provides these utility classes where you can create one to twelve columns of

equal width.

We have such classes available from grid-cols-1 until grid-cols-12 . But sometimes

we need grid columns with unequal widths. To understand how to create them using

Tailwind, we need to first understand how this works in CSS.

The CSS Property grid-template-columns & Values

CSS Syntax:

grid-template-columns: <value> <value> ...

100

Using the CSS property grid-template-columns , we can specify the widths of each

column in % , px , rem etc., separated by spaces. The number of individual values you

specify will be the number of columns created. The previous example of full page gallery

can be achieved in CSS using:

grid-template-columns: 50% 50%

This creates two columns of 50% width each and the rows are automatically created. But if

we need something like 40% and 60% width columns, in we can say:

grid-template-columns: 40% 60%

Since we don't have a Tailwind utility for such values, we can use arbitrary values for

achieving the same output:

grid-cols-[40%,60%]

Note that space is replaced by comma in square brackets. The syntax of grid-template-

columns gets more complex for complex layouts. Let's look into each of them with

appropriate examples.

Layout with Sidebar Example 16b

This is a common layout with a sidebar on left and main content on the right. There are

multiple ways of achieving this, but grid makes it simplest.

101

Markup

Solution

We need two columns here - .sidebar with a fixed width and .main that takes up the

remaining space. This is possible with an fr unit in grid-template-columns . Here's the

Tailwind solution:

<div class="container min-h-screen">
 <div class="sidebar">!!"!#div>
 <div class="main">!!"!#div>
!#div>

1
2
3
4

<div class="container min-h-screen grid grid-cols-[22rem,1fr]">
 !!"
!#div>

1
2
3

102

Along with grid class, we added grid-cols-[22rem,1fr] which translates to grid-

template-columns: 22rem 1fr . So we get two columns - first one with fixed 22rem

width and second one which occupies the remaining space.

▸ Working Demo

The fr Unit

The fr is short for fraction representing fraction of the remaining space. In flexbox, we

can set flex-grow of items to a value greater than 0 to make those elements occupy

fractions of the remaining space in the parent container right? The fr unit is quite similar

to that. In our above example, there's only one column with the fr unit, so that column

takes up 100% of the remaining space. We will soon see most of our examples involving

fr units.

Services Grid Example 16c

Example inspired by Inovatik Template

This is a classic example of grid - listing services or features in a grid format with equal

width columns.

103

https://play.tailwindcss.com/8iSRHYofoW?size=1100x650
https://inovatik.com/lomar-business-website-bootstrap-html-template.html

Can you try this out?

▸ Try it out

Solution

We need three columns of equal width. In Tailwind, we have already seen how simple it is

to do the same.

▸ Working Demo

CSS Solution

But if we have to achieve the same in CSS, we can use the fr unit. The fr unit helps us

distribute the remaining space (which is all the space in this example) proportionately.

So, you can repeat the fr unit as many times as the number of equal sized columns you

need. And, to avoid repetition, we can use the repeat() function in CSS. This function

takes in two inputs. The first one is the number of times you want to repeat and second

one being the value you want to repeat.

<div class="container grid grid-cols-3">
 <div class="item">!!"!#div>
 !!!% Five more items here !!&
!#div>

1
2
3
4

.container {

 display: grid;

 grid-template-columns: 1fr 1fr 1fr;
}

1
2
3
4

104

https://play.tailwindcss.com/eg1ycITwWp?size=1050x600
https://play.tailwindcss.com/tQAQZVPr4Z?size=1050x600

Better Solution

It's good to understand how the grid-cols-* Tailwind utilities work under the hood. But

we're not fully there yet.

.container {

 display: grid;

 grid-template-columns: repeat(3, 1fr);
}

1
2
3
4

105

Quick Bites Menu Example 16d

Usually restaurant menus are displayed in a grid fashion. Here's one such example with

the item name and description on the left and a picture on the right. Here, we want the

items in first column to occupy as much space as possible and the pictures to occupy only

as much space as needed.

▸ Try it out

Markup

<div class="container">

 <div class="item">!!"!#div>
 !!"!#span>
 <div class="item">!!"!#div>
 !!"!#span>
 <div class="item">!!"!#div>
 !!"!#span>
!#div>

1
2
3
4
5
6
7
8

106

https://play.tailwindcss.com/pSVTHGQ8ii?size=1050x600

Solution

We need two columns of unequal width, so we can use grid-cols-* with arbitrary values

to specify two values separated by commas. As you might have guessed, the first value is

1fr . You can specify a fixed width for the second column. But what's even better is to use

the keyword auto . This keyword lets the content of items decide the size of the column /

row.

▸ Working Demo

So far we used fixed units, percentage values, fr units and the auto keyword for

specifying grid-cols-* arbitrary values apart from the Tailwind utilities available. There

are few more options that we'll cover under the Advanced Grid Template Values topic.

<div class="container grid grid-cols-[1fr,auto]">
 !!"
!#div>

1
2
3

107

https://play.tailwindcss.com/Wr3hMxUagF?size=1050x600

17 Grid Template Rows

Sticky Footer with Grid Example 17a

We already saw how to make a sticky footer using flex. Here's a similar example with an

additional header element. If you can recall, we used flex-col and flex-grow to create

this.

Try this out with grid if you can guess how it's done.

▸ Try it out

108

https://play.tailwindcss.com/d9SQv7KC1p?size=1000x700

Markup

Solution

Look at the example and observe that we have a single column but multiple rows. This can

be specified using grid-rows-* instead of grid-cols-* . We need 3 rows - first and third

rows with auto height and the second row occupying all the remaining height.

▸ Working Demo

Note: This demo works as long as you have only three elements header , footer and

.main . If you add an additional element at the same level, it breaks. Whatever additional

content you want, you need to add it within the .main div.

Understanding Grid Template Rows Concept

The property grid-template-rows in CSS is used to specify how many rows you need

and of what size each. Similar to grid-template-columns the height of rows can be

specified in % , px , rem or any valid value for height separated by spaces. The number of

individual values you specify will be the number of rows created.

<div class="container min-h-screen">
 <header>!!"!#header>
 <div class="main">!!"!#div>
 <footer>!!"!#footer>
!#div>

1
2
3
4
5

<div class="container min-h-screen grid grid-rows-[auto,1fr,auto]">
 !!"
!#div>

1
2
3

109

https://codepen.io/thirus/pen/7487f1354f364b808a58eba1faee7395?editors=1100

Tailwind Class Explanation

grid-rows-1 Creates one grid row occupying full height of the container

grid-rows-2 Creates two grid rows occupying 50% height each

grid-rows-3 Creates three grid rows occupying 33.33% height each

In all the previous examples we got multiple rows even without using this property. That's

how grid works. Rows are automatically created to accommodate the additional items.

This is called implicit grid. Similarly in our above example, one column is automatically

created that occupies full width by default. We'll look into implicit grids and their sizing in a

while.

In the above example we needed rows of different heights, hence we used arbitrary

values. But if we need equal height rows, we have grid-rows-* utility classes for that in

Tailwind.

We will also look at more examples using grid-rows-* after covering a few more

concepts. For now, I'm sure you have a basic idea. And of course, you can use both grid-

col-* and grid-rows-* at the same time.

110

18 Gap

Pricing Plans with Grid Example 18a

Let's look at the same pricing plans example once again, this time using grid. By now you

know how to create three equal sized blocks (or equal sized columns) with grid. But let's

also look at how to add those spaces between those blocks.

First try creating this with grid, and see how you can add some spaces between the items.

▸ Try it out

Markup

<div class="container">

 <div class="plan">!!"!#div>
 <div class="plan">!!"!#div>
 <div class="plan">!!"!#div>
!#div>

1
2
3
4
5

111

https://play.tailwindcss.com/5lNICG16oR?size=1000x600

Tailwind Class CSS Property & Value Explanation

gap-x-0 column-gap: 0; Gap between columns is 0

gap-x-4 column-gap: 1rem; Gap between columns is 1rem

gap-x-6 column-gap: 1.5rem; Gap between columns is 1.5rem

gap-x-8 column-gap: 2rem; Gap between columns is 2rem

Solution

We have added a gap-x-8 class to add a spacing of 2rem between the columns.

▸ Working Demo

Understanding Column Gap Concept

The gap-x-* utilities set the size of the horizontal gap (also known as gutters) between

columns. Like I mentioned earlier in this book, this property can be used with flexbox too,

but doesn't have good browser support yet. With grid however, it is better supported.

Some of the common utilities for gap-x-* are here:

For all the available gap-x-* utilities, check the docs.

<div class="container grid grid-cols-3 gap-x-8">
 !!"
!#div>

1
2
3

112

https://play.tailwindcss.com/5RoqYuDaVe?size=1000x600
https://tailwindcss.com/docs/gap

Blog Posts Display Example 18b

This is a classic use case for grid - display of blog post cards in a grid format with

horizontal and vertical spacing between each card. Let's create this layout using grid and

also make it responsive.

Check the below link to see how this layout is created with Grid and made responsive

using the mobile first approach. Now see if you can add some horizontal and vertical

spacing between the items using gap-x-* and a similar property gap-y-* .

▸ Try it out

113

https://play.tailwindcss.com/p8RSdtVx8P?size=1050x650

Markup

Responsive Solution

Using the mobile first approach, we just add a grid class at first. This automatically

creates one column. At sm breakpoint, we change that to two columns using grid-cols-

2 and at md breakpoint, we change it to three columns using grid-cols-3 . We also add

spacing of 2rem between columns and rows with gap-x-8 and gap-y-8 .

▸ Working Demo

These gap utilities make it very easy to create spacing only between the items and not

around them. If we had to use margin utilities to do the same, we would have to change

those margins at every breakpoint too. Or we would have to use negative margins on the

container. We can also combine both the column and row gap utilities into one single

gap-* utility.

Better Solution

<div class="container">

 <div class="item">!!"!#div>
 !!!% Five more item cards !!&
!#div>

1
2
3
4

<div class="container grid sm:grid-cols-2 md:grid-cols-3 gap-x-8 gap-
y-8">

 !!"
!#div>

1

2
3

<div class="container grid sm:grid-cols-2 md:grid-cols-3 gap-8">
 !!"
!#div>

1
2
3

114

https://play.tailwindcss.com/bNVDIofD2N?size=1050x650

Understanding Row Gap Concept

The gap-y-* utilities set the size of the vertical gap (also known as gutters) between rows.

Again, this property can be used with flexbox too, but doesn't have good browser support

yet. With grid however, it is better supported. The available utilities are similar to that of

gap-x-* . For all the available values, check the docs.

Understanding Gap Concept

The utility gap is used to set the same spacing between rows and columns at once. The

available utilities are similar to that of gap-x-* and gap-y-* . For all the available values,

check the docs.

115

https://tailwindcss.com/docs/gap
https://tailwindcss.com/docs/gap

19 Justify Content

Featured Logos in a Grid Example 19a

We have seen a similar example of logos with flexbox. But with flex, you can only align

logos in one direction. You cannot control the alignment in the other direction. That is, we

can space them out horizontally and align them in each row, but we cannot align them

across multiple rows using flexbox. So, if you want them to be displayed in a neat grid

format, you need to use grid. For this example, we also want the logos to be spaced out to

occupy the full width of the container.

If we use grid-cols-4 for this, the container will be divided in four equal columns, so

that will not help us space out the logos to the extreme ends. Instead, let's use grid-

cols-[auto,auto,auto,auto] , which is same as grid-cols-[repeat(4,auto)] . Next,

we need to space them out fully.

▸ Try it out

In the above link, notice how there's a little gap on the right. We need to change this to

make the logos stretch end-to-end.

116

https://play.tailwindcss.com/IWJmkxQm7e?size=1300x600

Markup

Solution

We need one more utility class now - justify-between to space out the columns. This is

similar to what we did with flexbox.

▸ Working Demo

This is not yet responsive. We can do that without adding media queries. We will see that

in a while. And now, to notice the difference between flex and grid, change the grid and

grid-cols-* utilities to flex and flex-wrap instead.

Understanding Justify Content in Grid Concept

Before we talk about this property with reference to Grid, you need to know two more

terms. In flexbox, you have the main axis and the cross axis. Similarly, while working with

grid, you have the inline axis and the block axis.

Inline axis is the direction in which inline elements like span and img get placed. So

usually it's the row direction. While block axis is the direction in which block elements like

div and section get placed. So it's the vertical axis.

<div class="container grid grid-cols-[repeat(4,auto)] gap-12">

 !!!% Seven more img elements !!&
!#div>

1
2
3
4

<div class="container grid grid-cols-[repeat(4,auto)] gap-12 justify-
between">

 !!"
!#div>

1

2
3

117

https://play.tailwindcss.com/m6sitnPJKW?size=1300x600

The justify-* utilities are used to control placement of the grid items along the

inline/row axis - which is the horizontal direction. In simple terms, this is used to control

the placement and spacing between the grid columns. justify-between is one of the

available utilities we just used. Some more utilities are mentioned below:

118

Tailwind Class CSS Property & Value Explanation

justify-start justify-content: flex-start;
All columns are placed at the beginning of the

container

justify-end justify-content: flex-end;
All columns are placed at the end of the

container

justify-center justify-content: center; All columns are placed at the center

justify-between justify-content: space-between;

All columns are spaced out as much as

possible with first column at the beginning

and last column at the end (We just saw this

in action)

justify-around justify-content: space-around;

Space before the columns and after the

columns are half as much as space between

the columns

justify-evenly justify-content: space-evenly;
Space before, after and between the columns

are same

By default, if the sum total width of all items are smaller than the space available in the

grid container, the auto sized elements' widths are increased equally to fill the container.

This is exactly what's happening in our example before we add the justify-between

class.

In your browser (Chrome or Firefox), use the inspector tool on the Tailwind Play link above

and click on "grid" next to <div class="container">

This will highlight the grid cells. Before setting the justify-content property, this is what

we see:

119

Using grid-cols-* we have set our columns to auto size. Since the widths of all logos

combined is smaller than the width of the container, the remaining space is equally

divided and added to each column. (This is not the same as using the fr unit. If you use

1fr , each column ends up with the same width).

But when we add justify-between , this happens:

The grid cells now take up only as much width required. The remaining space is added to

the grid lines (or grid gaps) instead of the grid cells.

Note : If we use the fr units for specifying the width for any of the grid columns, there is

no space remaining and hence the utilities justify-* will have no effect! Which is why

we used grid-cols-[repeat(4,auto)] instead of grid-cols-4 .

Shopping Cart Summary Example 19b

Here's another great example for CSS Grid - a shopping cart summary with each row

containing an image, product description, quantity and price. You can use justify-*

here too, to space out the columns.

120

▸ Try it out

Markup

Solution

Along with using justify-between property, we also need to add a text-right to the

.price element to align the text in the last column to right.

▸ Working Demo

<div class="container grid grid-cols-[repeat(4,auto)] gap-y-8 gap-x-
4">

 <div class="desc">!!"!#div>
 <div class="qty">!!"!#div>
 <div class="price">!!"!#div>
 !!"
!#div>

1

2
3
4
5
6
7

<div class="container grid grid-cols-[repeat(4,auto)] gap-y-8 gap-x-4
justify-between">
 !!"
 <div class="price text-right">!!"!#div>
 !!"
 <div class="price text-right">!!"!#div>
!#div>

1

2
3
4
5
6

121

https://play.tailwindcss.com/0M3JKUoQEx?size=1100x650
https://play.tailwindcss.com/RZBOQTSKX2?size=1100x650

20 Align Content

Profile Card with Bio & Link Example 20a

Assume you need a profile card with a fixed height containing the profile picture, short bio

and a link - all three elements spaced out equally. This can be achieved using flexbox too,

but the solution with grid is one utility class lesser.

▸ Try it out

Markup

<div class="card h-96 grid">

 <img!!" !(
 <p>!!"!#p>
 <a>!!"!#a>
!#div>

1
2
3
4
5

122

https://play.tailwindcss.com/BBEZS8atZo?size=700x600

Solution

For this one, we need only one column, so adding grid to the .card element

automatically creates a grid with one column and three rows with auto heights. Now we

just need to control the vertical spacing using content-* utilities.

▸ Working Demo

Understanding Align Content in Grid Concept

We have seen content-* utilities with respect to flexbox to control spacing between

multiple lines of wrapped items along the cross axis. In Grid, these are used to control

spacing between the rows. content-between is one of the available utilities we just used.

The available utilities are similar to that of justify-* .

The justify-* utilities control placement of columns within container, while content-*

utilities control placement of rows within the container.

<div class="card h-96 grid content-between">
 !!"
!#div>

1
2
3

123

https://play.tailwindcss.com/23KtQveMrE?size=700x600

Tailwind Class CSS Property & Value Explanation

content-start align-content: flex-start;
All rows are placed at the beginning of the

container

content-end align-content: flex-end; All rows are placed at the end of the container

content-center align-content: center; All rows are placed at the center

content-between align-content: space-between;

All rows are spaced out as much as possible

with first row at the beginning and last row at

the end (We just saw this in action)

content-around align-content: space-around;
Space before the rows and after the rows are

half as much as space between the rows

content-evenly align-content: space-evenly;
Space before, after and between the rows are

same

Note : These utilities have an effect only when

1. The grid container has a height value that is greater than the sum of individual

row heights

2. And when none of the grid items has a height specified in fr units

Featured Logos Center of Page Example 20b

In Example 19a, we looked at displaying logos in a grid and spacing them horizontally with

justify-between . Now what if we want both the rows to be at the center of the page

vertically?

124

Note that as soon as you add a height of 100vh to the container, each row stretches to

occupy 50% of the height each and hence the logos are spread out vertically. We need to

bring them closer and place them at the center. Yes, this can be done with content-*

utilities because this controls the placement of the rows.

▸ Try it out

Markup

Solution

There are surely other ways of doing it, but the simplest solution is to use content-

center along with justify-between .

<div class="container min-h-screen grid grid-cols-[repeat(4,auto)]
gap-12 justify-between">

 !!!% Seven more img elements !!&
!#div>

1

2
3
4

125

https://play.tailwindcss.com/zsKYNiB5Lc?size=1100x650

▸ Working Demo

A small variation

Now assume you don't want the logos to space out horizontally, instead you want them to

be centered horizontally too.

Solution

For this, you can use justify-center instead of justify-between . So now we have:

<div class="container min-h-screen grid grid-cols-[repeat(4,auto)]
gap-12 justify-between content-center">
 !!"
!#div>

1

2
3

126

https://play.tailwindcss.com/lBjmHYCmJ2?size=1100x650

Better Solution

We have combined justify-center and content-center into place-content-center .

Understanding Place Content in Grid Concept

The place-content-* utilities allows you to control the spacing of grid items along both

the block and inline axes at once. But this is possible only when you want the placement of

rows and columns to be the same. In the previous example, we wanted the rows AND

columns to be placed at the center of the grid container. Hence we could use the place-

content-* utilities. The available utilities are similar to that of justify-* and content-

* .

<div class="container !!" justify-center content-center">
 !!"
!#div>

1
2
3

<div class="container !!" place-content-center">
 !!"
!#div>

1
2
3

127

21 Justify Items

Featured Logos of Different Widths Example 21a

We're back with the same example with yet another variation. Previously all the logos we

used were approximately of the same dimensions, hence it looked good. But if you add

some smaller or wider logos, you need to center align the logos in each column.

In the below link, you can see that the wider logos increase the width of the columns and

by default, the smaller ones are aligned to the left of those columns. Use the inspector

tool to take a closer look at what's happening. How can we center those smaller logos

within the columns?

▸ Try it out

Markup

Solution

There's one new utility class to our rescue - justify-items-* .

<div class="container grid grid-cols-[repeat(4,auto)] gap-12 justify-
between">

 !!!% Seven more img elements !!&
!#div>

1

2
3
4

128

https://play.tailwindcss.com/3AQKriDMPy?size=1100x650

Tailwind Class CSS Property & Value Explanation

justify-items-start justify-items: start;
All items are placed at the beginning of their

columns (horizontally)

justify-items-end justify-items: end;
All items are placed at the end of their columns

(horizontally)

justify-items-center justify-items: center;
All items are placed at the center of their

columns (horizontally)

justify-items-stretch justify-items: stretch;
The items are stretched to occupy full width of

the column if possible

▸ Working Demo

Understanding Justify Items Concept

As we now know, CSS Grid creates something similar to a table with rows and columns. If

you have experience with tables (or even simple spreadsheets), you know that adding

more content to any one cell widens that entire column. Same thing happens here too.

And while that happens, all the other cells in that column will have content sticking to the

left of that column by default.

The justify-items-* utilities allows us to horizontally align the content within the

columns, while the previous utilities justify-* allows us to control spacing of the entire

columns. The available utilities in Tailwind are:

<div class="container grid grid-cols-[repeat(4,auto)] gap-12 justify-
between justify-items-center">
 !!"
!#div>

1

2
3

129

https://play.tailwindcss.com/3CO5UDpiSo?size=1100x650

Note : This property does not make sense with flexbox because the elements are laid out

and aligned in only one direction.

Profile Card with Bio & Link Centered Example 21b

We are revisiting Example 20a, this time making everything center aligned horizontally.

▸ Try it out

Yes, this is possible with mx-auto and text-center applied to grid items individually. But

best solution is to apply styles to the container directly.

130

https://play.tailwindcss.com/23KtQveMrE?size=700x600

Markup

Solution

We can use the utility justify-items-center on the container to horizontally center

smaller and wider items within each column.

We additionally need a text-center to center align the paragraph.

▸ Working Demo

<div class="card h-96 grid content-between">

 <p>!!"!#p>
 <a>!!"!#a>
!#div>

1
2
3
4
5

<div class="card h-96 grid content-between justify-items-center text-
center">

 !!"
!#div>

1

2
3

131

https://play.tailwindcss.com/UluokyYQDp?size=700x600

22 Align Items

Image and Text Section Example 22a

Example from Inovatik Template

One very common section in web pages is an image on the left half and text on right half

of the page. You need the text and image to be perfectly center aligned vertically for all

large screen sizes. Grid is great for something like this.

▸ Try it out

132

https://inovatik.com/zinc-web-agency-website-bootstrap-html-template.html
https://play.tailwindcss.com/IOV63GjNUy?size=1000x600

Markup

Solution

Using grid-cols-2 we have created two equal sized columns. Using gap , we have added

some spacing between them. To center align the image and text vertically in the page, we

need to use the items-* utility, very similar to flexbox.

▸ Working Demo

The benefit of using grid over flexbox for this example is that gap property for grid is

supported in more browsers than for flexbox. Everything else is quite similar.

Understanding Align Items in Grid Concept

In grid, we observed earlier that adding more content to any one cell widens that entire

column and increases the height of that row too. And while that happens, all the other

cells in that row will have content sticking to the top of that column by default. Which is

why, in our previous example, when the image is taller than the text, the text is aligned to

the top of the row and when the text is taller than the image, the image is aligned to the

top.

<section class="container min-h-screen grid grid-cols-2 gap-16">

 <div>!!"!#div>
!#section>

1
2
3
4

<section class="container min-h-screen grid grid-cols-2 gap-16 items-
center">

 !!"
!#section>

1

2
3

133

https://play.tailwindcss.com/259AfPgDK1?size=1000x600

Tailwind
Class

CSS Property & Value Explanation

items-stretch align-items: stretch; All items are stretched to fill the container

items-center align-items: center;
All items are aligned to the center of the
container

items-start align-items: flex-start;
All items are aligned to the beginning of the
container (at the top in case of the above
example)

items-end align-items: flex-end;
All items are aligned to the end of the
container (at the bottom in case of the above
example)

items-baseline align-items: baseline;
All items are positioned such that the base
aligns to the end of the container (will we
talk about this soon)

The items-* utilities allow us to vertically align the content within the rows, while the

previous property content-* allowed us to control spacing of entire rows. We have

already seen the available utilities when we covered this concept with respect to flexbox.

Here they are again, for reference.

Featured Logos of Different Heights Example 22b

Let's look at the same example once again. So far, we used a fixed height h-10 for all the

logos. Now we'll remove that and instead add a max-w-[10rem] (Check the CSS tab). So

now, all the logos have different heights and different widths too. The way we horizontally

center aligned the logos in each column in Example 21a, this time we also need to

vertically center align them in each row.

134

▸ Try it out

Markup

Solution

We can use the utility items-center to vertically center the taller and shorter logos

within each row

▸ Working Demo

<div class="container !!" justify-between justify-items-center">

 !!!% Seven more img elements !!&
!#div>

1
2
3
4

<div class="container !!" justify-between justify-items-center items-
center">

 !!"
!#div>

1

2
3

135

https://play.tailwindcss.com/5F7YwldSs9?size=1100x650
https://play.tailwindcss.com/PrMvULeQbp?size=1100x650

Summary

justify-between is to space out the entire rows horizontally

justify-items-center is to center align smaller and wider logo horizontally within each

column

items-center is to center align shorter and taller logos vertically within each row

136

23 Place Items

Center a div using Grid Example 23a

We have already seen how easy it is to center a div using flexbox. With grid, it's one lesser

utility class.

Markup

Solution

You can either use the previous two utilities justify-items-center and items-center

along with grid . Or you can combine both these using the place-items-* utilities.

<div class="container">

 <div class="item">

 !!"
 !#div>
!#div>

1
2
3
4
5

137

▸ Working Demo

Understanding Place Items Concept

The place-items-* utilities allows you to align the items horizontally within columns and

vertically within rows at once. But this is possible only when you want the same alignment

in both directions. In the previous example, we wanted the item to be at the center

horizontally and vertically. Hence we could use the place-items-* utilities. The available

utilities are similar to that of justify-items-* and items-* .

<div class="container grid place-items-center">
 <div class="item">

 !!"
 !#div>
!#div>

1
2
3
4
5

138

https://play.tailwindcss.com/EUyR7hSMCa?size=600x400

24 Grid Column Start, End & Span

Horizontal Form Example 24a

Creating forms and making them responsive is so much more easier with grid than any

other tool. Here's the simplest example of a horizontal form with labels on the left, inputs

on the right and a button on the right too. With the knowledge of Grid so far, you can

surely create this component.

We can use grid-cols-[auto,1fr] to create two columns as required. But since the

button "Create Account" is the 5th item in the markup, it appears on the first column. How

do we make it appear on the second column instead?

▸ Try it out

139

https://play.tailwindcss.com/FTNoTkXPkc?size=600x450

Markup

Solution

Of course, one solution is to add a dummy element in HTML before the button, but that's

definitely not a good practice. And there's a simple utility class available for this:

▸ Working Demo

We have used col-start-2 on the grid item to change the column it appears in. Let's

learn about this.

Understanding Column Start Concept

Before we learn more about the col-start-* utilities, we need to learn about grid lines.

When you define a grid using grid-cols-* and/or grid-rows-* , grid lines are created.

These are nothing but the lines between and around the columns and rows. This picture

explains how the column lines and row lines are numbered.

<form class="grid grid-cols-[auto,1fr] items-center gap-y-6 gap-x-12">
 <label>!#label>
 <input !) !(
 <label>!#label>
 <input !) !(
 <button !!">Create Account!#button>
!#form>

1
2
3
4
5
6
7

<form class="!!"">
 !!"
 <button class="col-start-2" !!">Create Account!#button>
!#form>

1
2
3
4

140

https://play.tailwindcss.com/5YBb5JkK5P?size=650x400

Tailwind Class CSS Property & Value Explanation

col-start-1 grid-column-start: 1; The item starts at column line 1

col-start-2 grid-column-start: 2; The item starts at column line 2

It's important to remember that the line numbers start from 1 and not 0.

All the grid related utilities we saw so far are applied to the grid container. Now, we will

see a few that are applied to the grid items. The col-start-* is one of them. It specifies

the item's start position. Some of the available Tailwind utilities for this are:

Such utilities are available upto col-start-13 .

In CSS, you can also use negative values like grid-column-start: -1 . Here -1 specifies

the last column line. When negative integers are used, it starts counting the lines in

reverse starting from -1 .

In the above example, we col-start-2 because we wanted the button to start from

column line 2. Now observe that if you use col-start-3 , it creates a new column and

everything gets messed up. Hence you need to be careful with this utility class.

141

Single Price Grid Component Example 24b

Challenge from Frontend Mentor

This grid component is a challenge from the Frontend Mentor website. This is responsive

with the mobile version having just one column with all three items one below the other.

The desktop version however has two columns, but the first item spans across both the

columns.

For smaller screens, nothing needs to be done. For larger screens, you can make the first

item span using the col-start-* utility that we just saw along with col-end-* .

▸ Try it out

142

https://www.frontendmentor.io/challenges/single-price-grid-component-5ce41129d0ff452fec5abbbc
https://play.tailwindcss.com/hfWxBtlNgA?size=800x600

Markup

Solution

Above the `sm breakpoint, we need to make the .component-header start at column line

1 and end at column line 3.

▸ Working Demo

Let's learn about col-end-* utilities and few more ways of getting the same result.

Understanding Column End Concept

The utilities col-end-* is another set of grid item's utilities. It specifies the item's end

position. The Tailwind utilities available for this are similar to col-start-* . In CSS, you

can also use a negative integer for grid-column-end , in which case it starts counting the

lines in reverse, starting from -1 .

In the above example, we used col-end-3 because we wanted that item to end at

column line 3. You can also use arbitrary value col-end-[-1] .

<div class="container grid sm:grid-cols-2">
 <div class="component-header">!!"!#div>
 <div class="subscription">!!"!#div>
 <div class="why">!!"!#div>
!#div>

1
2
3
4
5

<div class="container grid sm:grid-cols-2">
 <div class="component-header sm:col-start-1 sm:col-end-3">!!"!#div>
 !!"
!#div>

1
2
3
4

143

https://play.tailwindcss.com/MSKC60Te0R?size=800x600

We can alternatively use another set of utilities col-span-* which can be used to specify

the number of columns to span. This is usually used along with either col-start-* or

col-end-* .

So, another solution to the previous example can be:

This means, start from column line 1 and span across two columns. This is helpful when

you know where to start and how many columns you want the item to span, but don't

want to calculate the end line.

You can also skip the col-start-1 here:

Because the starting column line is 1 by default.

OR even

OR

This means, end at column line 3 by spanning across two columns. Again this is helpful

when you know where to end and how many columns to span, but don't want to calculate

the start line. Don't miss trying out all these in the previous two examples.

<div class="component-header sm:col-start-1 sm:col-span-2">!!"!#div>1

<div class="component-header sm:col-span-2">!!"!#div>1

<div class="component-header sm:col-span-full">!!"!#div>1

<div class="component-header sm:col-span-2 sm:col-end-3">!!"!#div>1

144

Understanding Column Span Concept

The col-span-* utilities can be used on a grid item to specify how many columns to

span. This is usually used along with either col-start-* or col-end-* . But if used

alone, the default start and end lines are considered. The available utilities in Tailwind are

col-span-1 upto col-span-12 along with a helpful col-span-full which makes the

grid item span across all the columns in the grid.

Page Layout with Grid Example 24c

We already saw how to implement a layout with sidebar and sticky footer using grid, which

are the simplest examples of creating full page layouts using grid. Let's look another

layout that combines the above two with a header, sidebar, main content and a footer.

145

This is a grid layout with 2 columns and 3 rows. The header and footer span across

both the columns.

▸ Try it out

Markup

Solution

There are three things we need to do:

1. We have a fixed width sidebar, so the grid-cols-* will have one fixed width value

and 1fr .

2. We will have to use grid-rows-* to control the sizing of the rows because we need

the header and footer to occupy only as much as the content within, so we use auto

for header and footer. And we want the middle row to occupy as much height as

possible, so we use 1fr .

3. And for the header and footer, we use col-span-* utilities to span two columns.

▸ Working Demo

<div class="container min-h-screen">
 <header>!!"!#header>
 <div class="sidebar">!!"!#div>
 <div class="main">!!"!#div>
 <footer>!!"!#footer>
!#div>

1
2
3
4
5
6

<div class="container min-h-screen grid grid-cols-[22rem,1fr] grid-
rows-[auto,1fr,auto]">

 <header class="col-span-full">!!"!#header>
 !!"
 <footer class="col-span-full">!!"!#footer>
!#div>

1

2
3
4
5

146

https://play.tailwindcss.com/HkApT03Vh5?size=1050x750
https://play.tailwindcss.com/WitTlBxcgH?size=1050x750

25 Grid Row

Contact Form Example 25a

Let's look a contact form with a couple of fields in the first column and one field in the

second column. Previously we saw grid items spanning across columns, but here one grid

item spans across rows too. The concept is the same.

▸ Try it out

Markup

<form class="grid grid-cols-2 gap-6">
 <div>

 <label>!!"!#label>
 <input !!" !(
 !#div>
 <div>

 <label>!!"!#label>

1
2
3
4
5
6
7

147

https://play.tailwindcss.com/ycQ0cNzeMK?size=800x500

Solution

▸ Working Demo

We have already learned about the col-start utilities. Now we're using two new utilities

row-start-* and row-end-* .

Understanding Row Start and Row End Concept

The utilities row-start-* and row-end-* are also grid item's properties. row-start-*

specifies the item's start position and row-end-* specifies the item's end position with

respect to row lines.

 <input !!" !(
 !#div>
 <div class="message-block">
 <label>!!"!#label>
 <textarea>!!"!#textarea>
 !#div>
 <button>!!"!#button>
!#form>

8
9

10
11
12
13
14
15

<form class="grid grid-cols-2 gap-6">
 !!"
 <div class="col-start-2 row-start-1 row-end-3">
 <label> !!"!#label>
 <textarea>!!"!#textarea>
 !#div>
 <button class="col-span-full">!!"!#button>
!#form>

1
2
3
4
5
6
7
8

148

https://play.tailwindcss.com/AyXHH3hb9O?size=800x500

In the previous example, we want the message block to start from row line 1 and end at

row line 3, apart from starting at column line 2. It's important to specify all these row and

column lines.

The available utility classes in Tailwind are similar to that of col-start-* and col-end-*

.

Understanding Row Span Concept

Similar to col-span-* utilities, we also have row-span-* utilities for grid items to specify

how many rows to span. This is usually used along with either row-start-* or row-end-

* . But if used alone, the default start and end lines are considered. The available utilities

in Tailwind are row-span-1 upto row-span-12 along with a helpful row-span-full

which makes the grid item span across all the columns in the grid.

Note: It's always better to use the start and end utilities instead of span utilities.

Responsive Services Section Example 25b

Example Inspired from Brian Haferkamp's CodePen & User illustrations by Storyset

This is a section with an image and six services presently differently in three different

screen sizes. Mobile layout has one grid column, tablet layout has two grid columns and

desktop layout has three grid columns. But more importantly, the grid items' placements

change. This is quite simple now using col-start , col-end , row-start and row-end .

149

https://codepen.io/brianhaferkamp/full/KLgZJP
https://storyset.com/user

150

▸ Try it out

Markup

Solution

Following mobile-first approach, we start with one single column, change to two columns

at sm breakpoint and to three columns at md breakpoint.

We have changed the row and column lines for img and both the divs at sm and md

breakpoint. Look at the working demo and carefully observe how it's done.

▸ Working Demo

<section class="grid sm:grid-cols-2 md:grid-cols-3 gap-x-8">

 <div>!!"!#div>
 <div>!!"!#div>
!#section>

1
2
3
4
5

<section class="grid sm:grid-cols-2 md:grid-cols-3 gap-x-8">
 <img class="sm:row-start-1 sm:row-end-3 md:row-end-2 md:col-start-2"
!!">
 <div class="md:col-start-1 md:text-right">
 !!"
 !#div>
 <div class="sm:col-start-2 md:col-start-3">
 !!"
 !#div>
!#section>

1
2

3
4
5
6
7
8
9

151

https://play.tailwindcss.com/vGp1OQ3IXJ?size=980x600
https://play.tailwindcss.com/XGzxCFpNK9?size=1000x600

Testimonials Grid Section Example 25c

Challenge from Frontend Mentor

Here's another example from Frontend Mentor website, but with removed avatars and

names for simplicity. Go for the mobile first approach with just one column and above lg

breakpoint , try and achieve this layout.

▸ Try it out

Markup

<section>

 <div class="violet">!!"!#div>
 <div class="gray">!!"!#div>
 <div class="white">!!"!#div>
 <div class="dark">!!"!#div>
 <div class="white-long">!!"!#div>
!#section>

1
2
3
4
5
6
7

152

https://www.frontendmentor.io/challenges/testimonials-grid-section-Nnw6J7Un7
https://play.tailwindcss.com/4G0he6uKFB?size=1400x800

Solution

On mobile, you just have to apply grid and gap-8 to section and everything just

works. Above the lg breakpoint, you need to create four columns and almost every grid

item needs to be positioned using the row and column lines.

Most important is positioning of that .white-long div. You need to mention both the row

lines along with the column line. Here, I have used row-span-2 , but you can also use

row-end-3 .

▸ Working Demo

<section class="grid lg:grid-cols-4 gap-8">
 <div class="violet lg:col-span-2">!!"!#div>
 <div class="gray">!!"!#div>
 <div class="white lg:row-start-2">!!"!#div>
 <div class="dark lg:col-span-2">!!"!#div>
 <div class="white-long lg:row-start-1 lg:row-span-2 lg:col-start-
4">!!"!#div>

1
2
3
4
5
6

153

https://play.tailwindcss.com/RBxnlnqHGg?size=1400x800

26 Order

Responsive Pricing Plans Example 26a

Let's look at the Pricing Plans Example again and make it responsive with one change. On

mobile screens, we place the Popular plan first, followed by Standard and Premium

while keeping the order same on desktop.

▸ Try it out

154

https://play.tailwindcss.com/bhUESrnhk1?size=950x600

One way to approach this is to change the column lines using col-start for mobile and

change it back for larger screens. That surely works, but too confusing. Let's look at

another solution using the order property.

Markup

Solution

The .plan-highlight element is the popular plan that we want to place first on mobile

screens.

▸ Working Demo

On mobile screens, we are placing the popular plan first using order-first and at sm

breakpoint, we are changing back to default order using order-none .

Understanding Order in Grid Concept

The same order utilities that we saw with respect to flexbox can be used for grid items

too. The value can be any number - positive or negative. The items with greater order

value appear later on the web page compared to the items with lesser value irrespective

of their appearance in the markup.

If no order is specified, by default the value is 0 for all the elements and they follow the

same order as they appear in HTML. That's what happens at sm breakpoint.

<div class="container grid sm:grid-cols-3 gap-8">
 <div class="plan">!!"!#div>
 <div class="plan plan-highlight">!!"!#div>
 <div class="plan">!!"!#div>
<div>

1
2
3
4
5

<div class="plan plan-highlight order-first sm:order-none">!!"!#div>1

155

https://play.tailwindcss.com/QhaylWUiP4?size=950x600

27 Advanced Grid Template Values

Pricing Plans with Size Limits Example 27a

In the pricing plans example we saw earlier, you might have noticed that the columns

stretch full width of the container even on mobile screens. But since our content within

each card is too small, a wide card looks bad. So we want to limit the width of each card to

a maximum of say 18rem and also to a minimum of the content within so that it doesn't

shrink below that width.

156

▸ Try it out

HTML

Solution

There is no pure Tailwind solution for this. We can add a max-w- and min-w- to the

.plan element itself to limit the width of the cards. But then the column width still

remains large which makes it impossible to center align the three cards together on larger

screens. So, here's the perfect solution:

▸ Working Demo

We have replaced grid-cols-3 with grid-cols-[repeat(3,minmax(auto, 18rem))] .

In CSS, this is same as:

grid-template-columns: repeat(3, minmax(auto, 18rem))

<div class="container grid sm:grid-cols-3 gap-8">
 <div class="plan">!!"!#div>
 <div class="plan plan-highlight">!!"!#div>
 <div class="plan">!!"!#div>
<div>

1
2
3
4
5

<div class="container

 grid

 grid-cols-[minmax(auto,18rem)]
 sm:grid-cols-[repeat(3,minmax(auto,18rem))]
 justify-center
 gap-8">

 !!"
!#div>

1
2
3
4
5
6
7
8

157

https://play.tailwindcss.com/QhaylWUiP4?size=882x600
https://play.tailwindcss.com/8FxZNRcwhF?size=944x600

Understanding minmax() Concept

The minmax() function takes in two parameters - min and max. It specifies a size range

greater than or equal to min and less than or equal to max. Both these values can be any

length values in px , % , rem or even values like 1fr , min-content or max-content .

In the previous example, we want the card to be a minimum of the content width and a

maximum of 18rem . That's why we used auto as the value for min and 18rem as the

value for max.

Blog Post Page with Code Snippet Example 27b

Example Inspired from CSS Tricks Article - Preventing a Grid Blowout

We looked at creating a simple page layout with a sidebar using:

grid-cols-[22rem,1fr]

It's a simple solution and it usually works. But consider this blog post page example with a

similar page layout. Here we need to display a code snippet using a pre tag. And code

snippets can sometimes have long lines of code or comments. When we set max-width-

full and overflow-scroll to the pre element we expect it to occupy a maximum of

100% width and display a horizontal scrollbar.

158

https://css-tricks.com/preventing-a-grid-blowout/

But look at this link, resize the window to a smaller width and see what happens.

▸ Try it out

The main content expands to occupy the full width of the pre element making the whole

page "blowout". But why?

The 1fr value stretches the column to occupy remaining space when the content is small,

but otherwise, the minimum width is auto . So 1fr is actually equivalent to

minmax(auto, 1fr) . So, when you add a pre element with a huge width, that column

occupies a minimum width of the pre element. Let's look at the solution for this problem:

Solution

▸ Working Demo

<section class="min-h-screen grid grid-cols-[minmax(0,1fr),16rem]">
 !!"
!#section>

1
2
3

159

https://play.tailwindcss.com/GU707kYQa2?size=1002x600
https://play.tailwindcss.com/0LJuLu2EF0?size=1002x600

Tailwind Class CSS Property & Value

grid-cols-1 grid-template-columns: repeat(1, minmax(0, 1fr));

grid-cols-2 grid-template-columns: repeat(2, minmax(0, 1fr));

Now that the range is 0 to 1fr , it works fine. If none of this makes sense, just remember

one thing - minmax(0, 1fr) is always a better option than 1fr . Which is why, if you look

at the Tailwind classes grid-cols-* , their equivalent CSS values are:

And so on. But you can simply use the grid-cols-* utilities and not worry about any

blowout.

Responsive Grid without Media Queries Example 27c

Remember how we made the blog posts display responsive by adding media queries at

two breakpoints to change the number of columns? Well, we actually don't need to do

that. Grid has a way to decide how many columns to create based on the space available.

But there's no Tailwind solution for this too. We will be using arbitrary values again.

160

HTML

Solution

If you find these arbitrary values too hard to read, feel free to use custom CSS

<div class="container">

 <div class="item">!!"!#div>
 !!!% Five more item cards !!&
!#div>

1
2
3
4

<div class="container grid grid-cols-[repeat(auto-
fit,minmax(16rem,1fr))] gap-8">

 !!"
!#div>

1

2
3

161

▸ Working Demo

Resize your browser window to see that grid is automatically creating more or less

columns. Let's break this and understand what's happening and how.

Previously we used repeat(3, 1fr) for large screens. Now we have replaced the first

value with auto-fit and second value with minmax(16rem, 1fr) .

Now you know what minmax(16rem, 1fr) does. It occupies a minimum of 16rem width

no matter what. And if more space is available, it stretches to occupy more width. But

what is auto-fit ?

Understanding auto-fit Concept

The keyword auto-fit tells the browser to handle the number of columns and their sizes

such that the elements will wrap when the width is not large enough to fit them in without

any overflow. The 1fr in the second value of repeat ensures that in case there's more

space available, but not enough to accommodate another full column, that space will be

distributed among the other columns, making sure we aren’t left with any empty space at

the end of the row.

How the browser calculates

To understand the above example better, assume we have a screen width of 40rem . The

container has a padding of 2rem on left and right. So, now we're left with

40rem - 4rem = 36rem

This can easily fit one column of 16rem . After one column is placed, we are left with

.container {

 !!"
 grid-template-columns: repeat(auto-fit,minmax(16rem,1fr));
}

1
2
3
4

162

https://play.tailwindcss.com/jQjQLsSitN?size=1000x700

36rem - 16rem = 20rem

Can we fit another column of 16rem along with a gap of 2rem ? Yes, we can. So after the

second column is placed, we are left with:

20rem - (16rem + 2rem) = 2rem

Now we have 2rem of extra space, so that's divided between the two columns and now

each column is 17rem wide.

On the other hand, if the screen width is 36rem instead of 40rem , trace the same steps

and you'll see that we cannot fit the second column there. So, after subtracting the

container padding, we are left with 32rem - which is the width of that single column.

But you really need not worry about all the above calculation. Ideally you just need one

CSS rule to create a responsive grid layout of equally sized columns.

Now consider a scenario where you have just one blog post. How do we prevent it from

filling up the entire row?

Solution

▸ Working Demo

We have replaced the auto-fit keyword with auto-fill .

grid-template-columns: repeat(auto-fit, minmax(<fixed-width-value>,
1fr));

1

grid-template-columns: repeat(auto-fill, minmax(16rem, 1fr));1

163

https://play.tailwindcss.com/ZRj6lpJE5m?size=1000x700

Understanding auto-fill Concept

This is very similar to auto-fit . In our previous example where there are more than 5

blog posts, you will not be able to notice any difference at all. Try for yourself. Both the

keywords give us the same result. But when there are fewer items and more space to fill in

items:

auto-fit distributes the remaining space leaving no empty space in the row

auto-fill creates blank columns of the same size as the items.

If this is not clear, this CSS Tricks article - auto-fill vs auto-fit explains it really well.

Now use this method to make these examples responsive without using media queries:

1. Featured Logos in a Grid

2. Responsive Pricing Plans

You decide whether to use auto-fit or auto-fill .

164

https://css-tricks.com/auto-sizing-columns-css-grid-auto-fill-vs-auto-fit/

28 Grid Auto Flow

Analytics Section Example 28a

Here is a simple section that shows analytics with numbers and labels. Usually we would

create 3 separate div elements for this and each div would contain a number and label.

But we can avoid those additional divs using grid.

▸ Try it out

HTML

<section>

 11.5k!#span>
 <p>Tweets!#p>
 !!"!#span>
 <p>!!"!#p>
 !!"!#span>
 <p>!!"!#p>
!#section>

1
2
3
4
5
6
7
8

165

https://play.tailwindcss.com/qiopqnqjo4?size=900x500

Solution

Clearly we need three columns and two rows for this. But when we create a 3 x 2 grid,

items start getting placed one by one filling first row and then move to second row. We

need to change this default flow, to fill the column first instead of row, by adding the

grid-flow-col utility class:

▸ Working Demo

In most of the previous examples, we created columns explicitly using grid-cols-* and

the rows automatically got created based on the content. However, here we are creating

two rows using grid-rows-[auto,auto] . Columns are automatically created based on

the content.

Understanding Grid Auto Flow Concept

The CSS property grid-auto-flow specifies the flow in which the grid items get placed

into the rows and columns. By default, the flow is row . Which means, items start getting

placed one by one filling first row and then keep adding more rows.

The Tailwind equivalent for this property with value row is grid-flow-row (The default)

and for column is grid-flow-col (Which we used in our previous example).

<section class="grid grid-rows-[auto,auto] grid-flow-col justify-
between">

 !!"
!#section>

1

2
3

166

https://play.tailwindcss.com/r6Ps01mMnf?size=900x500

Tailwind
Class

CSS Property & Value Explanation

grid-flow-row grid-auto-flow: row;
The items get placed one by one filling one
row after the other

grid-flow-col grid-auto-flow: column;
The items get placed one by one filling one
column after the other

167

29 Justify Self & Align Self

Restaurant Cards with Labels Example 29a

Let's say we need to list restaurants with name, street, label and a picture just like the

screenshot below. You already know how this is done with flexbox. Now let's see how to

do this using grid.

▸ Try it out

Markup

<div class="container grid grid-cols-[auto,auto,1fr]">
 <div class="info">!!"!#div>
 !!"!#span>

!#div>

1
2
3
4
5

168

https://play.tailwindcss.com/vqBjhhDnQM?size=900x500

Solution

▸ Working Demo

We have created 3 columns where the width of first two columns is auto and the last

column is 1fr . So, the info and label columns occupy as much space as needed by the

content and the remaining space is assigned to the image column. We have used

justify-self-end on the image to push the image to the right.

Also, since the grid items stretch to occupy full height by default, the label stretches full

height. To prevent this, we have used self-start on the label.

Let's learn more about these two new properties.

Understanding Justify Self and Align Self Concept

The utilities justify-self-* is used on a grid item. When the content of the item is

smaller than the width of the column, we can use this property to control the alignment

along the row axis (horizontal direction).

The utilities self-* is also used on a grid item. When the content of the item is shorter

than the height of the row, we can use this property to control the alignment along the

block axis (vertical direction).

The available utilities are similar to that of justify-items-* and items-* .

<div class="container grid grid-cols-[auto,auto,1fr]">
 !!"
 !#span>

!#div>

1
2
3
4
5

169

https://play.tailwindcss.com/pPXlclAKrj?size=900x500

Caption at the Bottom of Image Example 29b

Here's an example where you wish to place a caption with a transparent overlay on the

image sticking to the bottom. Usually this is done with absolute positioning, but there's

one problem there. When the image is too small (on mobile screen) and the caption

cannot fit in the dimensions, a part of the text gets hidden. But if we implement this with

grid, the image expands to fit the content within.

▸ Try it out

Markup

<figure>

 <figcaption>!!"!#figcaption>
!#figure>

1
2
3
4

170

https://play.tailwindcss.com/wR6lhUPMRF?size=900x500

Solution

▸ Working Demo

We are trying to create only one grid cells and fit both the items into the same cell using

col-start-1 , col-end-2 , row-start-1 and row-end-2 . That makes the items overlap!

Yes, it's possible to create overlapping elements with grid. So then, we use self-end to

push the caption down to the bottom.

<figure class="grid">

 <figcaption class="col-start-1 col-end-2 row-start-1 row-end-2 self-
end">....!#figcaption>
!#figure>

1
2
3

4

171

https://play.tailwindcss.com/GG5KFZCKzN?size=900x500

Comprehensive Examples for Grid & Flexbox
Services Section Example 30a

Example from Inovatik Template

This is a responsive services section in a grid format from a template by Inovatik. On

mobile screens, two columns collapse into one. This a great example of flexbox within a

grid layout.

The whole section is a grid with two columns and three rows on desktop. The flow of the

grid is column. And each service is a flex container with the icon and text being flex items.

▸ Try it out

HINT : Use the utilities grid-rows-* and grid-flow-col for the grid. And make each

grid item a flex container.

▸ Working Demo

172

https://inovatik.com/nico/index.html
https://play.tailwindcss.com/PtzFWIh13Z?size=1000x600
https://play.tailwindcss.com/43FOwOu8Ni?size=912x600

Twitter Monthly Summary Card Example 30b

Example contributed by Naresh

Look at this card with one month summary of a Twitter profile along with some profile

info. This is a good example of flexbox and grid together in a component.

The header part is best implemented with a flex container, although you can choose to

use grid even for that. The statistics at the end is a simple grid layout with two columns

and two rows.

▸ Try it out

HINT : Use items-* and auto margins within flexbox. Use row-reverse direction for the

followers' images. For the grid, simply use grid-col-* and gap .

▸ Working Demo

I haven't made this responsive for smaller screens. You can try it out on your own.

173

https://twitter.com/naresh_io
https://play.tailwindcss.com/lJMrOW7Pwp?size=1000x600
https://play.tailwindcss.com/tlaSekROoR?size=1000x600

Social Media Dashboard Example 30c

Part of a challenge from Frontend Mentor

This example is part of the social media dashboard challenge. It's a brilliant example for

grid within grid.

Use a grid layout for the entire dashboard. And then, make each grid item also a grid

container.

▸ Try it out

HINT : Use the utilities grid-cols-* , justify-* , content-* , justify-self -*, self-*

and gap .

▸ Working Demo

Check the CSS tab under /* Important */ comments for the solution. I haven't made

this responsive for smaller screens. You can try it out on your own.

174

https://www.frontendmentor.io/challenges/social-media-dashboard-with-theme-switcher-6oY8ozp_H
https://play.tailwindcss.com/YqSnYeuxis?size=1100x600
https://play.tailwindcss.com/2G7yFGJlyd?size=1100x600

Conclusion
Congratulations! & You have reached the end of this book. This is a lot of content you

have consumed. I hope you took enough time to practise each of the examples, gave

enough thought to why one approach is better than other and tried to understand every

concept looking at its application.

Do let me know how this book helped you by sending a mail to contact@shrutibalasa.com.

And watch out for updates to the book. Thank you '

175

mailto:contact@shrutibalasa.com

	Complete Guide to CSS Flex & Grid - Tailwind CSS
	Disclaimer
	About the Author
	Table of Contents
	Introduction
	Time for another approach
	Who is this book for?
	Prerequisites
	What not to expect
	How to use this book?
	Flow of the book
	Newbie's Guide
	Intermediate's Guide
	Tailwind CSS Version Used
	Tailwind Play Links
	Reach Out
	Why Flex and Grid
	The Problem
	What you might already know
	The Solution
	1 Display Flex
	Quotes Side-by-Side Example 1a

	Understanding Display Flex Concept
	2 Justify Content
	Tabs Spaced Out Example 2a

	Understanding Justify Content Concept
	Card with Previous & Next Links Example 2b
	Team Profiles Example 2c

	3 Flex Wrap
	Responsive Team Profiles Example 3a

	Understanding Flex Wrap Concept
	Logos Wrapped Example 3b

	4 Align Items
	Icon and Text Example 4a

	Understanding Align Items Concept
	Profile Card - Small Example 4b
	Services Section Example 4c
	Frequent Questions Example 4d
	Center a div Example 4e

	5 Flex Direction
	Welcome Screen Example 5a

	Understanding Flex Direction Concept
	Main Axis and Cross Axis
	Testimonial Card Example 5b
	Alternating List of Profiles Example 5c

	6 Flex Grow
	Inline Subscribe Form Example 6a

	Understanding Flex Grow Concept
	Sticky Footer Example 6b
	Card with Header & Footer Example 6c
	Tabs Hover Effect Example 6d
	Variable Width Responsive Buttons Example 6e

	7 Flex Shrink
	Itinerary Example 7a

	Understanding Flex Shrink Concept
	Profile Card - Large Example 7b

	8 Flex Basis
	Split Screen Display Example 8a

	Understanding Flex Basis Concept
	Blog Post Display Example 8b
	Pricing Plans Example 8c
	Spaces between the blocks

	9 Flex Shorthand Property
	Understanding FlexConcept
	Navigation Bar with Centered Menu Example 9a
	Image and Text in 2:1 Ratio Example 9b

	10 Auto Margins
	Notifications Menu Item Example 10a
	Footer with Multiple Columns Example 10b

	11 Order
	Responsive Navigation Bar Example 11a

	Understanding Order Concept
	12 Align Self
	Product Display Example 12a

	Understanding Align Self Concept
	Profile with Rating Example 12b

	13 Align Content
	Full Page Testimonials Section Example 13a

	Understanding Align Content Concept
	14 Inline Flex
	Social Media Icons Example 14a

	Understanding Inline Flex Concept
	Flexbox Unlocked!
	Comprehensive Examples for Flexbox
	Article Preview Example 15a
	Fitness Report Example 15b
	Tweet Example 15c

	16 Display Grid & Grid Template Columns
	Full Page Gallery Example 16a

	Understanding Display Grid Concept
	Understanding Grid Template Columns Concept
	The CSS Property grid-template-columns & Values
	Layout with Sidebar Example 16b
	The fr Unit

	Services Grid Example 16c
	Quick Bites Menu Example 16d

	17 Grid Template Rows
	Sticky Footer with Grid Example 17a

	Understanding Grid Template Rows Concept
	18 Gap
	Pricing Plans with Grid Example 18a

	Understanding Column Gap Concept
	Blog Posts Display Example 18b

	Understanding Row Gap Concept
	Understanding Gap Concept
	19 Justify Content
	Featured Logos in a Grid Example 19a

	Understanding Justify Content in Grid Concept
	Shopping Cart Summary Example 19b

	20 Align Content
	Profile Card with Bio & Link Example 20a

	Understanding Align Content in Grid Concept
	Featured Logos Center of Page Example 20b

	Understanding Place Content in Grid Concept
	21 Justify Items
	Featured Logos of Different Widths Example 21a

	Understanding Justify Items Concept
	Profile Card with Bio & Link Centered Example 21b

	22 Align Items
	Image and Text Section Example 22a

	Understanding Align Items in Grid Concept
	Featured Logos of Different Heights Example 22b

	23 Place Items
	Center a div using Grid Example 23a

	Understanding Place Items Concept
	24 Grid Column Start, End & Span
	Horizontal Form Example 24a

	Understanding Column Start Concept
	Single Price Grid Component Example 24b

	Understanding Column End Concept
	Understanding Column Span Concept
	Page Layout with Grid Example 24c

	25 Grid Row
	Contact Form Example 25a

	Understanding Row Start and Row End Concept
	Understanding Row Span Concept
	Responsive Services Section Example 25b
	Testimonials Grid Section Example 25c

	26 Order
	Responsive Pricing Plans Example 26a

	Understanding Order in Grid Concept
	27 Advanced Grid Template Values
	Pricing Plans with Size Limits Example 27a

	Understanding minmax() Concept
	Blog Post Page with Code Snippet Example 27b
	Responsive Grid without Media Queries Example 27c

	Understanding auto-fit Concept
	Understanding auto-fill Concept
	28 Grid Auto Flow
	Analytics Section Example 28a

	Understanding Grid Auto Flow Concept
	29 Justify Self & Align Self
	Restaurant Cards with Labels Example 29a

	Understanding Justify Self and Align Self Concept
	Caption at the Bottom of Image Example 29b

	Comprehensive Examples for Grid & Flexbox
	Services Section Example 30a
	Twitter Monthly Summary Card Example 30b
	Social Media Dashboard Example 30c

	Conclusion
	

